These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
968 related articles for article (PubMed ID: 16055167)
1. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
2. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
3. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
4. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil. Lidelöw S; Ragnvaldsson D; Leffler P; Tesfalidet S; Maurice C Sci Total Environ; 2007 Nov; 387(1-3):68-78. PubMed ID: 17804040 [TBL] [Abstract][Full Text] [Related]
5. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327 [TBL] [Abstract][Full Text] [Related]
6. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. Balasoiu CF; Zagury GJ; Deschênes L Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270 [TBL] [Abstract][Full Text] [Related]
7. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
8. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea. Kim H; Kim DJ; Koo JH; Park JG; Jang YC Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945 [TBL] [Abstract][Full Text] [Related]
9. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Bauer M; Blodau C Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994 [TBL] [Abstract][Full Text] [Related]
10. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
11. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus and nitrogen sorption to soils in the presence of poultry litter-derived dissolved organic matter. Goyne KW; Jun HJ; Anderson SH; Motavalli PP J Environ Qual; 2008; 37(1):154-63. PubMed ID: 18178888 [TBL] [Abstract][Full Text] [Related]
13. Fate of arsenic compounds in poultry litter upon land application. Jackson BP; Seaman JC; Bertsch PM Chemosphere; 2006 Dec; 65(11):2028-34. PubMed ID: 16899273 [TBL] [Abstract][Full Text] [Related]
14. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil. Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550 [TBL] [Abstract][Full Text] [Related]
15. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils. Giral M; Zagury GJ; Deschênes L; Blouin JP Environ Pollut; 2010 May; 158(5):1890-8. PubMed ID: 19945202 [TBL] [Abstract][Full Text] [Related]
16. Speciation of zinc in contaminated soils. Stephan CH; Courchesne F; Hendershot WH; McGrath SP; Chaudri AM; Sappin-Didier V; Sauvé S Environ Pollut; 2008 Sep; 155(2):208-16. PubMed ID: 18222022 [TBL] [Abstract][Full Text] [Related]
17. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles. Zagury GJ; Dobran S; Estrela S; Deschênes L Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683 [TBL] [Abstract][Full Text] [Related]
18. Methylated arsenic, antimony and tin species in soils. Duester L; Diaz-Bone RA; Kösters J; Hirner AV J Environ Monit; 2005 Dec; 7(12):1186-93. PubMed ID: 16307070 [TBL] [Abstract][Full Text] [Related]
19. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Bauer M; Fulda B; Blodau C Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216 [TBL] [Abstract][Full Text] [Related]
20. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard. Newton K; Amarasiriwardena D; Xing B Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]