BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

967 related articles for article (PubMed ID: 16055167)

  • 1. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.
    Lidelöw S; Ragnvaldsson D; Leffler P; Tesfalidet S; Maurice C
    Sci Total Environ; 2007 Nov; 387(1-3):68-78. PubMed ID: 17804040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.
    Balasoiu CF; Zagury GJ; Deschênes L
    Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea.
    Kim H; Kim DJ; Koo JH; Park JG; Jang YC
    Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus and nitrogen sorption to soils in the presence of poultry litter-derived dissolved organic matter.
    Goyne KW; Jun HJ; Anderson SH; Motavalli PP
    J Environ Qual; 2008; 37(1):154-63. PubMed ID: 18178888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of arsenic compounds in poultry litter upon land application.
    Jackson BP; Seaman JC; Bertsch PM
    Chemosphere; 2006 Dec; 65(11):2028-34. PubMed ID: 16899273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils.
    Giral M; Zagury GJ; Deschênes L; Blouin JP
    Environ Pollut; 2010 May; 158(5):1890-8. PubMed ID: 19945202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation of zinc in contaminated soils.
    Stephan CH; Courchesne F; Hendershot WH; McGrath SP; Chaudri AM; Sappin-Didier V; Sauvé S
    Environ Pollut; 2008 Sep; 155(2):208-16. PubMed ID: 18222022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylated arsenic, antimony and tin species in soils.
    Duester L; Diaz-Bone RA; Kösters J; Hirner AV
    J Environ Monit; 2005 Dec; 7(12):1186-93. PubMed ID: 16307070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility.
    Bauer M; Fulda B; Blodau C
    Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
    Newton K; Amarasiriwardena D; Xing B
    Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.