These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16055256)
1. Acute inhalative exposure assessment: derivation of guideline levels with special regard to sensitive subpopulations and time scaling. Mielke H; Gundert A; Abraham K; Gundert-Remy U Toxicology; 2005 Oct; 214(3):256-67. PubMed ID: 16055256 [TBL] [Abstract][Full Text] [Related]
2. The Acute Exposure Guideline Level (AEGL) program: applications of physiologically based pharmacokinetic modeling. Bruckner JV; Keys DA; Fisher JW J Toxicol Environ Health A; 2004 Apr 23-May 28; 67(8-10):621-34. PubMed ID: 15192858 [TBL] [Abstract][Full Text] [Related]
3. Duration adjustment of acute exposure guideline level values for trichloroethylene using a physiologically-based pharmacokinetic model. Boyes WK; Evans MV; Eklund C; Janssen P; Simmons JE Risk Anal; 2005 Jun; 25(3):677-86. PubMed ID: 16022699 [TBL] [Abstract][Full Text] [Related]
4. Development of acute exposure guideline levels for airborne exposures to hazardous substances. Krewski D; Bakshi K; Garrett R; Falke E; Rusch G; Gaylor D Regul Toxicol Pharmacol; 2004 Apr; 39(2):184-201. PubMed ID: 15041148 [TBL] [Abstract][Full Text] [Related]
5. Development and application of acute exposure guideline levels (AEGLs) for chemical warfare nerve and sulfur mustard agents. Watson A; Opresko D; Young R; Hauschild V J Toxicol Environ Health B Crit Rev; 2006; 9(3):173-263. PubMed ID: 16621779 [TBL] [Abstract][Full Text] [Related]
6. Elevated internal exposure of children in simulated acute inhalation of volatile organic compounds: effects of concentration and duration. Abraham K; Mielke H; Huisinga W; Gundert-Remy U Arch Toxicol; 2005 Feb; 79(2):63-73. PubMed ID: 15565428 [TBL] [Abstract][Full Text] [Related]
7. The development of acute exposure guideline levels for hazardous substances. Rusch GM; Garrett R; Tobin P; Falke E; Lu PY Drug Chem Toxicol; 2002 Nov; 25(4):339-48. PubMed ID: 12378946 [TBL] [Abstract][Full Text] [Related]
8. Emergency planning and the Control of Major Accident Hazards (COMAH/Seveso II) Directive: an approach to determine the public safety zone for toxic cloud releases. O'Mahony MT; Doolan D; O'Sullivan A; Hession M J Hazard Mater; 2008 Jun; 154(1-3):355-65. PubMed ID: 18078713 [TBL] [Abstract][Full Text] [Related]
9. The AETL methodology as a potential solution to current challenges associated with the development and use of acute exposure levels in Seveso II applications. Wood M; Pichard A; Gundert-Remy U; de Rooij C; Tissot SM J Hazard Mater; 2006 May; 133(1-3):8-15. PubMed ID: 16343752 [TBL] [Abstract][Full Text] [Related]
10. Tales of acute risk assessment: health effects made out of whole cloth. Morawetz JS Am J Ind Med; 2005 Apr; 47(4):370-5. PubMed ID: 15776471 [TBL] [Abstract][Full Text] [Related]
11. Development of acute inhalation reference exposure levels (RELs) to protect the public from predictable excursions of airborne toxicants. Collins JF; Alexeeff GV; Lewis DC; Dodge DE; Marty MA; Parker TR; Budroe JD; Lam RH; Lipsett MJ; Fowles JR; Das R J Appl Toxicol; 2004; 24(2):155-66. PubMed ID: 15052612 [TBL] [Abstract][Full Text] [Related]
12. Modeling population exposures to outdoor sources of hazardous air pollutants. Ozkaynak H; Palma T; Touma JS; Thurman J J Expo Sci Environ Epidemiol; 2008 Jan; 18(1):45-58. PubMed ID: 17878926 [TBL] [Abstract][Full Text] [Related]
13. Methods for deriving pesticide aquatic life criteria. TenBrook PL; Tjeerdema RS; Hann P; Karkoski J Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939 [TBL] [Abstract][Full Text] [Related]
14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
15. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope CA; Thurston G; Calle EE; Thun MJ; Beckerman B; DeLuca P; Finkelstein N; Ito K; Moore DK; Newbold KB; Ramsay T; Ross Z; Shin H; Tempalski B Res Rep Health Eff Inst; 2009 May; (140):5-114; discussion 115-36. PubMed ID: 19627030 [TBL] [Abstract][Full Text] [Related]
16. Impact of spatiotemporal fluctuations in airborne chemical concentration on toxic hazard assessment. Bogen KT; Gouveia FJ J Hazard Mater; 2008 Mar; 152(1):228-40. PubMed ID: 17706864 [TBL] [Abstract][Full Text] [Related]
17. Intra-urban variability of air pollution in Windsor, Ontario--measurement and modeling for human exposure assessment. Wheeler AJ; Smith-Doiron M; Xu X; Gilbert NL; Brook JR Environ Res; 2008 Jan; 106(1):7-16. PubMed ID: 17961539 [TBL] [Abstract][Full Text] [Related]
18. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride. Bos PM; Zeilmaker MJ; van Eijkeren JC Toxicol Sci; 2006 Jun; 91(2):576-85. PubMed ID: 16569727 [TBL] [Abstract][Full Text] [Related]