These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16055538)

  • 41. Ultra sensitive sensor with enhanced dynamic range for high speed detection of multi-color fluorescence radiation.
    Tsupryk A; Tovkach I; Gavrilov D; Kosobokova O; Gudkov G; Tyshko G; Gorbovitski B; Gorfinkel V
    Biosens Bioelectron; 2008 May; 23(10):1512-8. PubMed ID: 18304800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-photon fluorescence excitation of macroscopic areas on planar waveguides.
    Duveneck GL; Bopp MA; Ehrat M; Balet LP; Haiml M; Keller U; Marowsky G; Soria S
    Biosens Bioelectron; 2003 May; 18(5-6):503-10. PubMed ID: 12706556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy.
    Yu JY; Holland DB; Blake GA; Guo CL
    Opt Express; 2013 Jan; 21(2):2097-109. PubMed ID: 23389190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectral unmixing of flavin autofluorescence components in cardiac myocytes.
    Chorvat D; Kirchnerova J; Cagalinec M; Smolka J; Mateasik A; Chorvatova A
    Biophys J; 2005 Dec; 89(6):L55-7. PubMed ID: 16227502
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimal feature selection applied to multispectral fluorescence imaging.
    Wood TC; Thiemjarus S; Koh KR; Elson DS; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):222-9. PubMed ID: 18982609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells.
    Koyama-Honda I; Ritchie K; Fujiwara T; Iino R; Murakoshi H; Kasai RS; Kusumi A
    Biophys J; 2005 Mar; 88(3):2126-36. PubMed ID: 15596511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust single-molecule approach for counting autofluorescent proteins.
    Cognet L; Tardin C; Négrier ML; Breillat C; Coussen F; Choquet D; Lounis B
    J Biomed Opt; 2008; 13(3):031216. PubMed ID: 18601540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single-molecule position data.
    Semrau S; Schmidt T
    Biophys J; 2007 Jan; 92(2):613-21. PubMed ID: 17085496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking.
    Dunne PD; Fernandes RA; McColl J; Yoon JW; James JR; Davis SJ; Klenerman D
    Biophys J; 2009 Aug; 97(4):L5-7. PubMed ID: 19686638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy.
    Hendrix J; Flors C; Dedecker P; Hofkens J; Engelborghs Y
    Biophys J; 2008 May; 94(10):4103-13. PubMed ID: 18234806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct quantification of gene expression using fluorescence correlation spectroscopy.
    Nomura Y; Nakamura T; Feng Z; Kinjo M
    Curr Pharm Biotechnol; 2007 Oct; 8(5):286-90. PubMed ID: 17979726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy.
    Berland KM
    J Biotechnol; 2004 Mar; 108(2):127-36. PubMed ID: 15129721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of action spectra of light-activated processes.
    Ross JA; Zvyagin AV; Heckenberg NR; Upcroft J; Upcroft P; Rubinsztein-Dunlop H
    J Biomed Opt; 2006; 11(1):014008. PubMed ID: 16526885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring dynamic binding of chromatin proteins in vivo by fluorescence correlation spectroscopy and temporal image correlation spectroscopy.
    Mazza D; Stasevich TJ; Karpova TS; McNally JG
    Methods Mol Biol; 2012; 833():177-200. PubMed ID: 22183595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2003; 72():465-98. PubMed ID: 14719345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy.
    Müller CB; Weiss K; Richtering W; Loman A; Enderlein J
    Opt Express; 2008 Mar; 16(6):4322-9. PubMed ID: 18542529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy.
    Digman MA; Gratton E
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):273-282. PubMed ID: 20835996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.
    Kim SA; Schwille P
    Curr Opin Neurobiol; 2003 Oct; 13(5):583-90. PubMed ID: 14630222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection.
    Tantirimudalige SN; Raghuvamsi PV; Sharma KK; Wei Bao JC; Anand GS; Wohland T
    J Biol Chem; 2022 Nov; 298(11):102570. PubMed ID: 36209827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.