These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 16055649)

  • 21. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster.
    Vermeulen CJ; Van De Zande L; Bijlsma R
    Biogerontology; 2005 Dec; 6(6):387-95. PubMed ID: 16518700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steroid control of longevity in Drosophila melanogaster.
    Simon AF; Shih C; Mack A; Benzer S
    Science; 2003 Feb; 299(5611):1407-10. PubMed ID: 12610309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thioredoxin-2 affects lifespan and oxidative stress in Drosophila.
    Svensson MJ; Larsson J
    Hereditas; 2007 Mar; 144(1):25-32. PubMed ID: 17567437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue.
    Michon T; Estevez Y; Walter J; German-Retana S; Le Gall O
    FEBS J; 2006 Mar; 273(6):1312-22. PubMed ID: 16519694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis.
    Wang MH; Lazebny O; Harshman LG; Nuzhdin SV
    Aging Cell; 2004 Jun; 3(3):133-40. PubMed ID: 15153181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic variation for life span, resistance to paraquat, and spontaneous activity in unselected populations of Drosophila melanogaster: implications for transgenic rescue of life span.
    Khazaeli AA; Nuzhdin SV; Curtsinger JW
    Mech Ageing Dev; 2007 Sep; 128(9):486-93. PubMed ID: 17688911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes.
    Ellederová Z; Cais O; Susor A; Uhlírová K; Kovárová H; Jelínková L; Tomek W; Kubelka M
    Mol Reprod Dev; 2008 Feb; 75(2):309-17. PubMed ID: 17290414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila.
    Imai Y; Gehrke S; Wang HQ; Takahashi R; Hasegawa K; Oota E; Lu B
    EMBO J; 2008 Sep; 27(18):2432-43. PubMed ID: 18701920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E.
    Grzela R; Strokovska L; Andrieu JP; Dublet B; Zagorski W; Chroboczek J
    Biochimie; 2006 Jul; 88(7):887-96. PubMed ID: 16626853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of oxidative stress resistance in Drosophila melanogaster by gene overexpression.
    Monnier V; Girardot F; Cheret C; Andres O; Tricoire H
    Genesis; 2002; 34(1-2):76-9. PubMed ID: 12324953
    [No Abstract]   [Full Text] [Related]  

  • 31. The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA.
    Duncan KE; Strein C; Hentze MW
    Mol Cell; 2009 Nov; 36(4):571-82. PubMed ID: 19941818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila.
    Hernández G; Altmann M; Sierra JM; Urlaub H; Diez del Corral R; Schwartz P; Rivera-Pomar R
    Mech Dev; 2005 Apr; 122(4):529-43. PubMed ID: 15804566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Coactivator MBF1 governs oxidative stress response].
    Hirose S
    Tanpakushitsu Kakusan Koso; 2005 Feb; 50(2):136-40. PubMed ID: 15704460
    [No Abstract]   [Full Text] [Related]  

  • 34. Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms.
    Rosettani P; Knapp S; Vismara MG; Rusconi L; Cameron AD
    J Mol Biol; 2007 May; 368(3):691-705. PubMed ID: 17368478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein.
    Shih JW; Tsai TY; Chao CH; Wu Lee YH
    Oncogene; 2008 Jan; 27(5):700-14. PubMed ID: 17667941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromium(III) triggers the DNA-damaged checkpoint of the cell cycle and induces a functional increase of 4E-BP.
    Le Bouffant R; Mulner-Lorillon O; Morales J; Cormier P; Bellé R
    Chem Res Toxicol; 2008 Feb; 21(2):542-9. PubMed ID: 18197632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotin deficiency decreases life span and fertility but increases stress resistance in Drosophila melanogaster.
    Landenberger A; Kabil H; Harshman LG; Zempleni J
    J Nutr Biochem; 2004 Oct; 15(10):591-600. PubMed ID: 15542350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO.
    Gershman B; Puig O; Hang L; Peitzsch RM; Tatar M; Garofalo RS
    Physiol Genomics; 2007 Mar; 29(1):24-34. PubMed ID: 17090700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuron-specific overexpression of core clock genes improves stress-resistance and extends lifespan of Drosophila melanogaster.
    Solovev I; Dobrovolskaya E; Shaposhnikov M; Sheptyakov M; Moskalev A
    Exp Gerontol; 2019 Mar; 117():61-71. PubMed ID: 30415070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression.
    Zdanowicz A; Thermann R; Kowalska J; Jemielity J; Duncan K; Preiss T; Darzynkiewicz E; Hentze MW
    Mol Cell; 2009 Sep; 35(6):881-8. PubMed ID: 19782035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.