BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 1605582)

  • 1. Catalytic sites of hemoprotein peroxidases.
    Ortiz de Montellano PR
    Annu Rev Pharmacol Toxicol; 1992; 32():89-107. PubMed ID: 1605582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide.
    DePillis GD; Ortiz de Montellano PR
    Biochemistry; 1989 Sep; 28(19):7947-52. PubMed ID: 2611222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase.
    Taurog A; Dorris ML; Doerge DR
    Arch Biochem Biophys; 1996 Jun; 330(1):24-32. PubMed ID: 8651700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Contribution of protein conformation to stereochemistry and reactivity of the active center of heme proteins and enzymes. The existence of horseradish peroxidase conformations and their possible role in the catalysis mechanism].
    Sharonov IuA; Pis'menskiĭ VF; Iarmola EG
    Mol Biol (Mosk); 1988; 22(6):1491-506. PubMed ID: 3252148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of a functional metalloenzyme: introduction of a site for manganese binding and oxidation into a heme peroxidase.
    Wilcox SK; Putnam CD; Sastry M; Blankenship J; Chazin WJ; McRee DE; Goodin DB
    Biochemistry; 1998 Dec; 37(48):16853-62. PubMed ID: 9836578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation.
    Huang L; Ortiz de Montellano PR
    Arch Biochem Biophys; 2006 Feb; 446(1):77-83. PubMed ID: 16375846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism.
    Hollenberg PF
    FASEB J; 1992 Jan; 6(2):686-94. PubMed ID: 1537457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes.
    Matsunaga I; Shiro Y
    Curr Opin Chem Biol; 2004 Apr; 8(2):127-32. PubMed ID: 15062772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of heme environments and proximal ligands in peroxidases and other hemoproteins through carbon-13 nuclear magnetic resonance spectroscopy of carbon monoxide complexes.
    Behere DV; Gonzalez-Vergara E; Goff HM
    Biochem Biophys Res Commun; 1985 Sep; 131(2):607-13. PubMed ID: 2996515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notomastus lobatus chloroperoxidase and Amphitrite ornata dehaloperoxidase both contain histidine as their proximal heme iron ligand.
    Roach MP; Chen YP; Woodin SA; Lincoln DE; Lovell CR; Dawson JH
    Biochemistry; 1997 Feb; 36(8):2197-202. PubMed ID: 9047320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of compound I formation in heme peroxidases.
    Hiner AN; Raven EL; Thorneley RN; García-Cánovas F; Rodríguez-López JN
    J Inorg Biochem; 2002 Jul; 91(1):27-34. PubMed ID: 12121759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
    Kumar D; Sastry GN; de Visser SP
    Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does Replacement of the Axial Histidine Ligand in Cytochrome
    Lee CWZ; Mubarak MQE; Green AP; de Visser SP
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase.
    Ortiz de Montellano PR; Choe YS; DePillis G; Catalano CE
    J Biol Chem; 1987 Aug; 262(24):11641-6. PubMed ID: 3624229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan.
    Bonagura CA; Sundaramoorthy M; Pappa HS; Patterson WR; Poulos TL
    Biochemistry; 1996 May; 35(19):6107-15. PubMed ID: 8634253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR detection and characterization of lignin peroxidase porphyrin pi-cation radical.
    Khindaria A; Aust SD
    Biochemistry; 1996 Oct; 35(40):13107-11. PubMed ID: 8855947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering.
    Vidossich P; Alfonso-Prieto M; Rovira C
    J Inorg Biochem; 2012 Dec; 117():292-7. PubMed ID: 22883961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monooxygenase activity of cytochrome c peroxidase.
    Miller VP; DePillis GD; Ferrer JC; Mauk AG; Ortiz de Montellano PR
    J Biol Chem; 1992 May; 267(13):8936-42. PubMed ID: 1315745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase.
    Barrows TP; Poulos TL
    Biochemistry; 2005 Nov; 44(43):14062-8. PubMed ID: 16245922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.