BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16056052)

  • 1. Predicting proximal femoral strength using structural engineering models.
    Keyak JH; Kaneko TS; Tehranzadeh J; Skinner HB
    Clin Orthop Relat Res; 2005 Aug; (437):219-28. PubMed ID: 16056052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck.
    Cheal EJ; Hipp JA; Hayes WC
    J Biomech; 1993 Mar; 26(3):251-64. PubMed ID: 8468338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of fracture location in the proximal femur using finite element models.
    Keyak JH; Rossi SA; Jones KA; Les CM; Skinner HB
    Med Eng Phys; 2001 Nov; 23(9):657-64. PubMed ID: 11755810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture.
    Bessho M; Ohnishi I; Okazaki H; Sato W; Kominami H; Matsunaga S; Nakamura K
    J Orthop Sci; 2004; 9(6):545-50. PubMed ID: 16228668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures.
    Pulkkinen P; Eckstein F; Lochmüller EM; Kuhn V; Jämsä T
    J Bone Miner Res; 2006 Jun; 21(6):895-901. PubMed ID: 16753020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions.
    Bessho M; Ohnishi I; Matsumoto T; Ohashi S; Matsuyama J; Tobita K; Kaneko M; Nakamura K
    Bone; 2009 Aug; 45(2):226-31. PubMed ID: 19398043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the strength of femoral shafts with and without metastatic lesions.
    Keyak JH; Kaneko TS; Rossi SA; Pejcic MR; Tehranzadeh J; Skinner HB
    Clin Orthop Relat Res; 2005 Oct; 439():161-70. PubMed ID: 16205155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lytic lesions in the femoral neck: Importance of location and evaluation of a novel minimally invasive repair technique.
    Kaneko TS; Skinner HB; Keyak JH
    J Orthop Res; 2008 Aug; 26(8):1127-32. PubMed ID: 18327790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of non-invasive assessments of strength of the proximal femur.
    Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML
    Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of new concepts in hip arthroplasty.
    Wik TS
    Acta Orthop Suppl; 2012 Apr; 83(345):1-26. PubMed ID: 22489909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):353-60. PubMed ID: 1762430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach of predicting fracture load in the human proximal femur using non-invasive QCT imaging technique.
    Lee T; Pereira BP; Chung YS; Oh HJ; Choi JB; Lim D; Shin JH
    Ann Biomed Eng; 2009 May; 37(5):966-75. PubMed ID: 19288197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).
    Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V
    Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry.
    Pulkkinen P; Jämsä T; Lochmüller EM; Kuhn V; Nieminen MT; Eckstein F
    Osteoporos Int; 2008 Apr; 19(4):547-58. PubMed ID: 17891327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study.
    Miura M; Nakamura J; Matsuura Y; Wako Y; Suzuki T; Hagiwara S; Orita S; Inage K; Kawarai Y; Sugano M; Nawata K; Ohtori S
    BMC Musculoskelet Disord; 2017 Dec; 18(1):536. PubMed ID: 29246133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model.
    Gebauer M; Stark O; Vettorazzi E; Grifka J; Püschel K; Amling M; Beckmann J
    J Orthop Res; 2014 Jan; 32(1):31-8. PubMed ID: 24019186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute.
    Kok J; Širka A; Grassi L; Raina DB; Tarasevičius Š; Tägil M; Lidgren L; Isaksson H
    Clin Biomech (Bristol, Avon); 2019 Mar; 63():172-178. PubMed ID: 30903873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.