These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1605625)
1. Investigation of the substrate binding and catalytic groups of the P-C bond cleaving enzyme, phosphonoacetaldehyde hydrolase. Olsen DB; Hepburn TW; Lee SL; Martin BM; Mariano PS; Dunaway-Mariano D Arch Biochem Biophys; 1992 Jul; 296(1):144-51. PubMed ID: 1605625 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue. Olsen DB; Hepburn TW; Moos M; Mariano PS; Dunaway-Mariano D Biochemistry; 1988 Mar; 27(6):2229-34. PubMed ID: 3132206 [TBL] [Abstract][Full Text] [Related]
3. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis. Baker AS; Ciocci MJ; Metcalf WW; Kim J; Babbitt PC; Wanner BL; Martin BM; Dunaway-Mariano D Biochemistry; 1998 Jun; 37(26):9305-15. PubMed ID: 9649311 [TBL] [Abstract][Full Text] [Related]
4. Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis. Zhang G; Mazurkie AS; Dunaway-Mariano D; Allen KN Biochemistry; 2002 Nov; 41(45):13370-7. PubMed ID: 12416981 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028 [TBL] [Abstract][Full Text] [Related]
6. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily. Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258 [TBL] [Abstract][Full Text] [Related]
7. X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis. Morais MC; Zhang G; Zhang W; Olsen DB; Dunaway-Mariano D; Allen KN J Biol Chem; 2004 Mar; 279(10):9353-61. PubMed ID: 14670958 [TBL] [Abstract][Full Text] [Related]
8. Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage. Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN Bioorg Chem; 2006 Dec; 34(6):394-409. PubMed ID: 17070898 [TBL] [Abstract][Full Text] [Related]
9. Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa: purification properties and comparison with Bacillus cereus enzyme. Dumora C; Lacoste AM; Cassaigne A Biochim Biophys Acta; 1989 Aug; 997(3):193-8. PubMed ID: 2504289 [TBL] [Abstract][Full Text] [Related]
10. A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant. Vocadlo DJ; Wicki J; Rupitz K; Withers SG Biochemistry; 2002 Aug; 41(31):9736-46. PubMed ID: 12146939 [TBL] [Abstract][Full Text] [Related]
11. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Khangulov SV; Sossong TM; Ash DE; Dismukes GC Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506 [TBL] [Abstract][Full Text] [Related]
12. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
13. Roles of asp126 and asp156 in the enzyme function of sphingomyelinase from Bacillus cereus. Fujii S; Ogata K; Inoue B; Inoue S; Murakami M; Iwama S; Katsumura S; Tomita M; Tamura H; Tsukamoto K; Ikezawa H; Ikeda K J Biochem; 1999 Jul; 126(1):90-7. PubMed ID: 10393325 [TBL] [Abstract][Full Text] [Related]
14. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme. Legler PM; Massiah MA; Mildvan AS Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023 [TBL] [Abstract][Full Text] [Related]
15. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center. Keresztessy Z; Kiss L; Hughes MA Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386 [TBL] [Abstract][Full Text] [Related]
17. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate. Cole SC; Yon RJ Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454 [TBL] [Abstract][Full Text] [Related]
18. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams. Badarau A; Page MI Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588 [TBL] [Abstract][Full Text] [Related]
19. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions. Badarau A; Page MI Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217 [TBL] [Abstract][Full Text] [Related]
20. The enzymic cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase. La Nauze JM; Rosenberg H; Shaw DC Biochim Biophys Acta; 1970 Aug; 212(2):332-50. PubMed ID: 4989158 [No Abstract] [Full Text] [Related] [Next] [New Search]