These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Feist AM; Scholten JC; Palsson BØ; Brockman FJ; Ideker T Mol Syst Biol; 2006; 2():2006.0004. PubMed ID: 16738551 [TBL] [Abstract][Full Text] [Related]
46. Crystallization and preliminary X-ray diffraction studies of formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanopyrus kandleri. Shima S; Thauer RK; Michel H; Ermler U Proteins; 1996 Sep; 26(1):118-20. PubMed ID: 8880936 [TBL] [Abstract][Full Text] [Related]
47. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum. Kengen SW; Daas PJ; Duits EF; Keltjens JT; van der Drift C; Vogels GD Biochim Biophys Acta; 1992 Feb; 1118(3):249-60. PubMed ID: 1737047 [TBL] [Abstract][Full Text] [Related]
48. Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri. Paulo LM; Hidayat MR; Moretti G; Stams AJM; Sousa DZ Biotechnol Appl Biochem; 2020 Sep; 67(5):744-750. PubMed ID: 32282086 [TBL] [Abstract][Full Text] [Related]
50. Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium. Leigh JA; Rinehart KL; Wolfe RS Biochemistry; 1985 Feb; 24(4):995-9. PubMed ID: 3922409 [TBL] [Abstract][Full Text] [Related]
51. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex. Dong M; Gonzalez TD; Klems MM; Steinberg LM; Chen W; Papoutsakis ET; Bahnson BJ Biotechnol Prog; 2017 Sep; 33(5):1243-1249. PubMed ID: 28556629 [TBL] [Abstract][Full Text] [Related]
52. The formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanobacterium thermoautotrophicum delta H. Nucleotide sequence and functional expression of the cloned gene. DiMarco AA; Sment KA; Konisky J; Wolfe RS J Biol Chem; 1990 Jan; 265(1):472-6. PubMed ID: 2403564 [TBL] [Abstract][Full Text] [Related]
53. An archaeal origin of the Wood-Ljungdahl H Adam PS; Borrel G; Gribaldo S Nat Microbiol; 2019 Dec; 4(12):2155-2163. PubMed ID: 31451772 [TBL] [Abstract][Full Text] [Related]
54. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. Huang L; Liu X; Zhang Z; Ye J; Rensing C; Zhou S; Nealson KH ISME J; 2022 Feb; 16(2):370-377. PubMed ID: 34341507 [TBL] [Abstract][Full Text] [Related]
55. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. Kulkarni G; Mand TD; Metcalf WW mBio; 2018 Jul; 9(4):. PubMed ID: 29970471 [TBL] [Abstract][Full Text] [Related]
56. Cytochemical demonstration of 5-formyl tetrahydrofolate cyclodehydrase and 5,10-methenyl tetrahydrofolate cyclohydrolase activity. Tzortzatou F J Histochem Cytochem; 1977 May; 25(5):349-54. PubMed ID: 301150 [TBL] [Abstract][Full Text] [Related]
57. Carbon isotope effects associated with aceticlastic methanogenesis. Gelwicks JT; Risatti JB; Hayes JM Appl Environ Microbiol; 1994 Feb; 60(2):467-72. PubMed ID: 11536629 [TBL] [Abstract][Full Text] [Related]
58. Solar-driven methanogenesis with ultrahigh selectivity by turning down H Ye J; Wang C; Gao C; Fu T; Yang C; Ren G; Lü J; Zhou S; Xiong Y Nat Commun; 2022 Nov; 13(1):6612. PubMed ID: 36329056 [TBL] [Abstract][Full Text] [Related]