BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16059672)

  • 1. Towards the chemometric dissection of peptide--HLA-A*0201 binding affinity: comparison of local and global QSAR models.
    Doytchinova IA; Walshe V; Borrow P; Flower DR
    J Comput Aided Mol Des; 2005 Mar; 19(3):203-12. PubMed ID: 16059672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.
    Guan P; Doytchinova IA; Walshe VA; Borrow P; Flower DR
    J Med Chem; 2005 Nov; 48(23):7418-25. PubMed ID: 16279801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201.
    Doytchinova IA; Flower DR
    J Med Chem; 2001 Oct; 44(22):3572-81. PubMed ID: 11606121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR study on MHC class I a alleles based on the novel parameters of amino acids.
    Wang J; Wang XY; Shu M; Wang YQ; Lin Y; Wang L; Cheng XM; Lin ZH
    Protein Pept Lett; 2011 Sep; 18(9):956-63. PubMed ID: 21529342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach.
    Tian F; Yang L; Lv F; Yang Q; Zhou P
    Amino Acids; 2009 Mar; 36(3):535-54. PubMed ID: 18575802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the quantitative prediction of T-cell epitopes: QSAR studies on peptides having affinity with the class I MHC molecular HLA-A*0201.
    Zhihua L; Yuzhang W; Bo Z; Bing N; Li W
    J Comput Biol; 2004; 11(4):683-94. PubMed ID: 15579238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the binding affinity of epitope-peptides with HLA-A*0201 by encoding atom-pair non-covalent interaction information between receptor and ligands.
    Hu L; Ai Z; Liu P; Xiong Q; Min M; Lan C; Wang J; Fan L; Chen D
    Chem Biol Drug Des; 2010 Jun; 75(6):597-606. PubMed ID: 20565476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
    Doytchinova IA; Walshe VA; Jones NA; Gloster SE; Borrow P; Flower DR
    J Immunol; 2004 Jun; 172(12):7495-502. PubMed ID: 15187128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative molecular similarity index analysis (CoMSIA) study identifies an HLA-A2 binding supermotif.
    Doytchinova IA; Flower DR
    J Comput Aided Mol Des; 2002; 16(8-9):535-44. PubMed ID: 12602948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains.
    Parker KC; Bednarek MA; Coligan JE
    J Immunol; 1994 Jan; 152(1):163-75. PubMed ID: 8254189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new set of amino acid descriptors and its application in peptide QSARs.
    Mei H; Liao ZH; Zhou Y; Li SZ
    Biopolymers; 2005; 80(6):775-86. PubMed ID: 15895431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study.
    Doytchinova IA; Flower DR
    Proteins; 2002 Aug; 48(3):505-18. PubMed ID: 12112675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction.
    Du QS; Wei YT; Pang ZW; Chou KC; Huang RB
    Protein Eng Des Sel; 2007 Sep; 20(9):417-23. PubMed ID: 17681974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Bayesian neural network models of MHC class II peptide binding.
    Burden FR; Winkler DA
    J Mol Graph Model; 2005 Jun; 23(6):481-9. PubMed ID: 15878832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide binding specificities of HLA-B*5701 and B*5801.
    Zhang Y; Mei H; Wang Q; Xie J; Lv J; Pan X; Tan W
    Sci China Life Sci; 2012 Sep; 55(9):818-25. PubMed ID: 23015131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201.
    Doytchinova IA; Blythe MJ; Flower DR
    J Proteome Res; 2002; 1(3):263-72. PubMed ID: 12645903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationships and the prediction of MHC supermotifs.
    Doytchinova IA; Guan P; Flower DR
    Methods; 2004 Dec; 34(4):444-53. PubMed ID: 15542370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel amino acids indices based on quantum topological molecular similarity and their application to QSAR study of peptides.
    Hemmateenejad B; Yousefinejad S; Mehdipour AR
    Amino Acids; 2011 Apr; 40(4):1169-83. PubMed ID: 20852906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.