These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 16059784)

  • 41. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.
    Wang R; Gao JY
    Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural networks and chaos: construction, evaluation of chaotic networks, and prediction of chaos with multilayer feedforward networks.
    Bahi JM; Couchot JF; Guyeux C; Salomon M
    Chaos; 2012 Mar; 22(1):013122. PubMed ID: 22462998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Do horizontal propulsive forces influence the nonlinear structure of locomotion?
    Kurz MJ; Stergiou N
    J Neuroeng Rehabil; 2007 Aug; 4():30. PubMed ID: 17697386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics.
    Fu C; Suzuki Y; Kiyono K; Morasso P; Nomura T
    J R Soc Interface; 2014 Dec; 11(101):20140958. PubMed ID: 25339687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear transient computation as a potential "kernel trick" in cortical processing.
    Crook N; Jin Goh W
    Biosystems; 2008; 94(1-2):55-9. PubMed ID: 18616979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frustrated chaos in biological networks.
    Bersini H; Calenbuhr V
    J Theor Biol; 1997 Sep; 188(2):187-200. PubMed ID: 9379673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking.
    Jo S; Massaquoi SG
    Biol Cybern; 2007 Mar; 96(3):279-307. PubMed ID: 17124602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Computer modeling and simulation of bipedal walking in the Japanese macaque].
    Ogihara N
    Brain Nerve; 2010 Nov; 62(11):1183-92. PubMed ID: 21068455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear dynamics and chaos in fractional-order neural networks.
    Kaslik E; Sivasundaram S
    Neural Netw; 2012 Aug; 32():245-56. PubMed ID: 22386788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of state transitions in an in silico model of epilepsy using small perturbations.
    Chiu AW; Bardakjian BL
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1856-9. PubMed ID: 15490834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.
    Innocenti G; Morelli A; Genesio R; Torcini A
    Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Instability-induced hierarchy in bipedal locomotion.
    Ohgane K; Ueda K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051915. PubMed ID: 18643110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Input reconstruction of chaos sensors.
    Yu D; Liu F; Lai PY
    Chaos; 2008 Jun; 18(2):023106. PubMed ID: 18601473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of natural arm swing motion in human bipedal walking.
    Park J
    J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonant hopping of a robot controlled by an artificial neural oscillator.
    Pelc EH; Daley MA; Ferris DP
    Bioinspir Biomim; 2008 Jun; 3(2):026001. PubMed ID: 18369282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.
    Scott-Pandorf MM; O'Connor DP; Layne CS; Josić K; Kurz MJ
    J Biomech Eng; 2009 Sep; 131(9):091005. PubMed ID: 19725694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
    Liu M
    Neural Netw; 2009 Sep; 22(7):949-57. PubMed ID: 19443178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.