These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 16060354)
1. Using an extended kalman filter for rigid body pose estimation. Halvorsen K; Söderström T; Stokes V; Lanshammar H J Biomech Eng; 2005 Jun; 127(3):475-83. PubMed ID: 16060354 [TBL] [Abstract][Full Text] [Related]
2. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering. Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188 [TBL] [Abstract][Full Text] [Related]
3. On Inertial Body Tracking in the Presence of Model Calibration Errors. Miezal M; Taetz B; Bleser G Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266 [TBL] [Abstract][Full Text] [Related]
4. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation. Joukov V; Bonnet V; Karg M; Venture G; Kulic D IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526 [TBL] [Abstract][Full Text] [Related]
5. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints. Klous M; Klous S J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294 [TBL] [Abstract][Full Text] [Related]
6. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. Sabatini AM IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938 [TBL] [Abstract][Full Text] [Related]
7. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. Cerveri P; Pedotti A; Ferrigno G J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410 [TBL] [Abstract][Full Text] [Related]
8. Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. Todorov E IEEE Trans Biomed Eng; 2007 Nov; 54(11):1927-39. PubMed ID: 18018688 [TBL] [Abstract][Full Text] [Related]
9. Estimation and Observability Analysis of Human Motion on Lie Groups. Joukov V; Cesic J; Westermann K; Markovic I; Petrovic I; Kulic D IEEE Trans Cybern; 2020 Mar; 50(3):1321-1332. PubMed ID: 31567105 [TBL] [Abstract][Full Text] [Related]
10. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. De Groote F; De Laet T; Jonkers I; De Schutter J J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414 [TBL] [Abstract][Full Text] [Related]
11. A Robust Tri-Electromagnet-Based 6-DoF Pose Tracking System Using an Error-State Kalman Filter. Dong S; Wang H Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338700 [TBL] [Abstract][Full Text] [Related]
12. Improvement in Recovery of Hemodynamic Responses by Extended Kalman Filter With Non-Linear State-Space Model and Short Separation Measurement. Dong S; Jeong J IEEE Trans Biomed Eng; 2019 Aug; 66(8):2152-2162. PubMed ID: 30507523 [TBL] [Abstract][Full Text] [Related]
13. 4D human body posture estimation based on a motion capture system and a multi-rigid link model. Yoshikawa N; Suzuki Y; Ozaki W; Yamamoto T; Nomura T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4847-50. PubMed ID: 23367013 [TBL] [Abstract][Full Text] [Related]
14. Optimal estimation of complex aerial movements using dynamic optimisation. Venne A; Bailly F; Charbonneau E; Dowling-Medley J; Begon M Sports Biomech; 2023 Feb; 22(2):300-315. PubMed ID: 35670189 [TBL] [Abstract][Full Text] [Related]
15. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation. Ligorio G; Sabatini AM Sensors (Basel); 2013 Feb; 13(2):1919-41. PubMed ID: 23385409 [TBL] [Abstract][Full Text] [Related]
16. Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. Bonnet V; Richard V; Camomilla V; Venture G; Cappozzo A; Dumas R J Biomech; 2017 Sep; 62():148-155. PubMed ID: 28551098 [TBL] [Abstract][Full Text] [Related]
17. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation. Sabatini AM Sensors (Basel); 2011; 11(10):9182-206. PubMed ID: 22163689 [TBL] [Abstract][Full Text] [Related]
18. Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm. Alshawaqfeh M; Serpedin E; Younes AB BMC Genomics; 2017 Mar; 18(Suppl 3):228. PubMed ID: 28361680 [TBL] [Abstract][Full Text] [Related]
19. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network. Bukhari W; Hong SM Phys Med Biol; 2016 Mar; 61(5):1947-67. PubMed ID: 26878653 [TBL] [Abstract][Full Text] [Related]
20. Estimating joint kinematics from skin motion observation: modelling and validation. Wolf A; Senesh M Comput Methods Biomech Biomed Engin; 2011 Nov; 14(11):939-46. PubMed ID: 21607885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]