BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16060513)

  • 1. Noninvasive method for estimation of complex elastic modulus of arterial vessels.
    Zhang X; Kinnick RR; Fatemi M; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):642-52. PubMed ID: 16060513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stiffening of arteries by the tissue-mimicking gelatin.
    Zhang X; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1534-9. PubMed ID: 16921906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of wave velocity in arterial walls with ultrasound transducers.
    Zhang X; Greenleaf JF
    Ultrasound Med Biol; 2006 Nov; 32(11):1655-60. PubMed ID: 17112952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a torsion wave and measuring its propagation velocity in the circumferential direction of arterial wall.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e165-8. PubMed ID: 16860360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of complex arterial elastic modulus from ring resonance excited by ultrasound radiation force.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e169-72. PubMed ID: 16860364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive generation and measurement of propagating waves in arterial walls.
    Zhang X; Greenleaf JF
    J Acoust Soc Am; 2006 Feb; 119(2):1238-43. PubMed ID: 16521784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the arterial stiffness in patients with acute ischemic stroke using longitudinal elasticity modulus measurements obtained with Shear Wave Elastography.
    Li Z; Du L; Wang F; Luo X
    Med Ultrason; 2016 Jun; 18(2):182-9. PubMed ID: 27239652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes.
    Bernal M; Nenadic I; Urban MW; Greenleaf JF
    J Acoust Soc Am; 2011 Mar; 129(3):1344-54. PubMed ID: 21428498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the phased-tracking method for reduction of artifacts in estimated artery wall deformation.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2050-64. PubMed ID: 17091841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional Estimation of Arterial Stiffness Using Vascular Guided Wave Imaging with Geometry Correction.
    Guo Y; Wang Y; Chang EJ; Lee WN
    Ultrasound Med Biol; 2018 Apr; 44(4):884-896. PubMed ID: 29402485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echo-tracking technology assessment of carotid artery stiffness in patients with coronary slow flow.
    Yang S; Wang DZ; Zhang HX; He W; Chen BX
    Ultrasound Med Biol; 2015 Jan; 41(1):72-6. PubMed ID: 25438843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region.
    Widman E; Maksuti E; Amador C; Urban MW; Caidahl K; Larsson M
    Ultrasound Med Biol; 2016 Oct; 42(10):2423-35. PubMed ID: 27425151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse wave imaging of the human carotid artery: an in vivo feasibility study.
    Luo J; Li RX; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):174-81. PubMed ID: 22293749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force.
    Dutta P; Urban MW; Le Maître OP; Greenleaf JF; Aquino W
    Phys Med Biol; 2015 Jul; 60(13):5279-96. PubMed ID: 26109582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early evaluation of carotid elasticity by an instantaneous wave intensity technique in patients with systemic lupus erythematosus.
    Liu CL; Wang CZ; Wang Y; Zhang LZ; Liu L; Bian XL
    J Ultrasound Med; 2014 Dec; 33(12):2125-9. PubMed ID: 25425368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.
    Maksuti E; Widman E; Larsson D; Urban MW; Larsson M; Bjällmark A
    Ultrasound Med Biol; 2016 Jan; 42(1):308-21. PubMed ID: 26454623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Shear Wave Imaging of the Human Cornea Using a Dual-Element Transducer.
    Chen PY; Shih CC; Lin WC; Ma T; Zhou Q; Shung KK; Huang CC
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive arterial blood pressure waveform monitoring using two- element ultrasound system.
    Seo J; Pietrangelo SJ; Lee HS; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):776-84. PubMed ID: 25881355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Carotid and Brachial Artery Stiffness: A First Step Toward Mechanical Mapping of the Arterial Tree.
    Maurice RL; Vaujois L; Dahdah N; Nuyt AM; Bigras JL
    Ultrasound Med Biol; 2015 Jul; 41(7):1808-13. PubMed ID: 25840477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.