These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16060538)

  • 1. A cryoinjury model using engineered tissue equivalents for cryosurgical applications.
    Han B; Grassl ED; Barocas VH; Coad JE; Bischof JC
    Ann Biomed Eng; 2005 Jul; 33(7):972-82. PubMed ID: 16060538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I--thermal response.
    Hoffmann NE; Bischof JC
    J Biomech Eng; 2001 Aug; 123(4):301-9. PubMed ID: 11563754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoinjury of MCF-7 human breast cancer cells and inhibition of post-thaw recovery using TNF-alpha.
    Han B; Swanlund DJ; Bischof JC
    Technol Cancer Res Treat; 2007 Dec; 6(6):625-34. PubMed ID: 17994793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems.
    Klossner DP; Robilotto AT; Clarke DM; VanBuskirk RG; Baust JM; Gage AA; Baust JG
    Cryobiology; 2007 Dec; 55(3):189-99. PubMed ID: 17888898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical study on the thermal effects of cryosurgery on selective cell destruction.
    Chua KJ; Chou SK; Ho JC
    J Biomech; 2007; 40(1):100-16. PubMed ID: 16368100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues.
    Teo KY; DeHoyos TO; Dutton JC; Grinnell F; Han B
    Biomaterials; 2011 Aug; 32(23):5380-90. PubMed ID: 21549425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of tissue injury in cryosurgery.
    Gage AA; Baust J
    Cryobiology; 1998 Nov; 37(3):171-86. PubMed ID: 9787063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on pulmonary cryoablation in a porcine model of normal lungs.
    Niu L; Zhou L; Korpan NN; Wu B; Tang J; Mu F; Li H; Hao Z; Chiu D; Xu K
    Technol Cancer Res Treat; 2012 Aug; 11(4):389-94. PubMed ID: 22475062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-cryosurgery: advances and challenges.
    Liu J; Deng ZS
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4521-42. PubMed ID: 19928115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part II--injury response.
    Hoffmann NE; Bischof JC
    J Biomech Eng; 2001 Aug; 123(4):310-6. PubMed ID: 11563755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a tissue engineered human prostate tumor equivalent for use in the evaluation of cryoablative techniques.
    Robilotto AT; Clarke D; Baust JM; Van Buskirk RG; Gage AA; Baust JG
    Technol Cancer Res Treat; 2007 Apr; 6(2):81-9. PubMed ID: 17375970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level.
    Bischof JC; Smith D; Pazhayannur PV; Manivel C; Hulbert J; Roberts KP
    Cryobiology; 1997 Feb; 34(1):42-69. PubMed ID: 9028916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced hepatic tissue destruction in ablative cryosurgery: potentials of intermittent freezing and selective vascular inflow occlusion.
    Kollmar O; Richter S; Schilling MK; Menger MD; Pistorius GA
    Cryobiology; 2004 Jun; 48(3):263-72. PubMed ID: 15157775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurement and prediction of biophysical response during freezing in tissues.
    Bischof JC
    Annu Rev Biomed Eng; 2000; 2():257-88. PubMed ID: 11701513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of optimal freezing parameters of human prostate cancer in a nude mouse model.
    Turk TM; Rees MA; Pietrow P; Myers CE; Mills SE; Gillenwater JY
    Prostate; 1999 Feb; 38(2):137-43. PubMed ID: 9973099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of nerve-sparing prostate cryosurgery: applications and limitations in a canine model.
    Janzen NK; Han KR; Perry KT; Said JW; Schulam PG; Belldegrun AS
    J Endourol; 2005 May; 19(4):520-5. PubMed ID: 15910269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermal variables on human breast cancer in cryosurgery.
    Rui J; Tatsutani KN; Dahiya R; Rubinsky B
    Breast Cancer Res Treat; 1999 Jan; 53(2):185-92. PubMed ID: 10326796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-treatment inflammation induced by TNF-alpha augments cryosurgical injury on human prostate cancer.
    Chao BH; He X; Bischof JC
    Cryobiology; 2004 Aug; 49(1):10-27. PubMed ID: 15265713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A parametric study of freezing injury in BPH1CAFTD-2 human prostate tumor cells.
    Geeslin MG; Swanlund DJ; Bischof JC
    Cryo Letters; 2007; 28(3):173-86. PubMed ID: 17898905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.