BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 16061181)

  • 1. Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
    Rothwell PJ; Mitaksov V; Waksman G
    Mol Cell; 2005 Aug; 19(3):345-55. PubMed ID: 16061181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
    Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D
    Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified kinetic mechanism applicable to multiple DNA polymerases.
    Bakhtina M; Roettger MP; Kumar S; Tsai MD
    Biochemistry; 2007 May; 46(18):5463-72. PubMed ID: 17419590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity.
    Joyce CM; Potapova O; Delucia AM; Huang X; Basu VP; Grindley ND
    Biochemistry; 2008 Jun; 47(23):6103-16. PubMed ID: 18473481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intramolecular FRET system monitors fingers subdomain opening in Klentaq1.
    Allen WJ; Rothwell PJ; Waksman G
    Protein Sci; 2008 Mar; 17(3):401-8. PubMed ID: 18287276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
    Yang L; Arora K; Beard WA; Wilson SH; Schlick T
    J Am Chem Soc; 2004 Jul; 126(27):8441-53. PubMed ID: 15238001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
    Rothwell PJ; Waksman G
    J Biol Chem; 2007 Sep; 282(39):28884-28892. PubMed ID: 17640877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms.
    Evans GW; Hohlbein J; Craggs T; Aigrain L; Kapanidis AN
    Nucleic Acids Res; 2015 Jul; 43(12):5998-6008. PubMed ID: 26013816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se.
    Yang L; Beard WA; Wilson SH; Broyde S; Schlick T
    J Mol Biol; 2002 Apr; 317(5):651-71. PubMed ID: 11955015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of viscogens, dNTPalphaS, and rhodium(III) as probes in stopped-flow experiments to obtain new evidence for the mechanism of catalysis by DNA polymerase beta.
    Bakhtina M; Lee S; Wang Y; Dunlap C; Lamarche B; Tsai MD
    Biochemistry; 2005 Apr; 44(13):5177-87. PubMed ID: 15794655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7.
    Li Y; Dutta S; Doublié S; Bdour HM; Taylor JS; Ellenberger T
    Nat Struct Mol Biol; 2004 Aug; 11(8):784-90. PubMed ID: 15235589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerase fidelity: kinetics, structure, and checkpoints.
    Joyce CM; Benkovic SJ
    Biochemistry; 2004 Nov; 43(45):14317-24. PubMed ID: 15533035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational coupling in DNA polymerase information transfer.
    Johnson KA
    Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):107-12. PubMed ID: 1351289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic characterization of a DNA repair enzyme: NMR studies of [methyl-13C]methionine-labeled DNA polymerase beta.
    Bose-Basu B; DeRose EF; Kirby TW; Mueller GA; Beard WA; Wilson SH; London RE
    Biochemistry; 2004 Jul; 43(28):8911-22. PubMed ID: 15248749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity.
    Wuite GJ; Smith SB; Young M; Keller D; Bustamante C
    Nature; 2000 Mar; 404(6773):103-6. PubMed ID: 10716452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators.
    Brandis JW; Edwards SG; Johnson KA
    Biochemistry; 1996 Feb; 35(7):2189-200. PubMed ID: 8652560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the catalytic core of human DNA polymerase kappa.
    Uljon SN; Johnson RE; Edwards TA; Prakash S; Prakash L; Aggarwal AK
    Structure; 2004 Aug; 12(8):1395-404. PubMed ID: 15296733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.