These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Thermodynamic characterization of single mismatches found in naturally occurring RNA. Davis AR; Znosko BM Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop. Tanaka F; Kameda A; Yamamoto M; Ohuchi A Biochemistry; 2004 Jun; 43(22):7143-50. PubMed ID: 15170351 [TBL] [Abstract][Full Text] [Related]
5. A base-pairing model of duplex formation. I. Watson-Crick pairing geometries. Bashford JD; Jarvis PD Biopolymers; 2005 Aug; 78(6):287-97. PubMed ID: 15834953 [TBL] [Abstract][Full Text] [Related]
6. An algebraic model of RNA duplex formation. Bashford JD; Jarvis PD Biopolymers; 2004 Apr; 73(6):657-67. PubMed ID: 15048769 [TBL] [Abstract][Full Text] [Related]
7. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops. Vecenie CJ; Morrow CV; Zyra A; Serra MJ Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic characterization of naturally occurring RNA single mismatches with G-U nearest neighbors. Davis AR; Znosko BM Biochemistry; 2008 Sep; 47(38):10178-87. PubMed ID: 18754680 [TBL] [Abstract][Full Text] [Related]
10. Local connectivity of neutral networks. Reidys CM Bull Math Biol; 2009 Feb; 71(2):265-90. PubMed ID: 19115073 [TBL] [Abstract][Full Text] [Related]
11. Use of linear regression model to compare RNA secondary structures. Dai Q; Wang T J Theor Biol; 2008 Aug; 253(4):854-60. PubMed ID: 18538347 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure. Broda M; Kierzek E; Gdaniec Z; Kulinski T; Kierzek R Biochemistry; 2005 Aug; 44(32):10873-82. PubMed ID: 16086590 [TBL] [Abstract][Full Text] [Related]
13. A neural network for predicting the stability of DNA/DNA duplexes. Liu X; Ma L; Cheng C; Wang Y; Miyajima H; Zhao Y Nucleosides Nucleotides Nucleic Acids; 2005; 24(3):199-209. PubMed ID: 15892259 [TBL] [Abstract][Full Text] [Related]
14. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Sugimoto N; Nakano S; Yoneyama M; Honda K Nucleic Acids Res; 1996 Nov; 24(22):4501-5. PubMed ID: 8948641 [TBL] [Abstract][Full Text] [Related]
15. Predicting RNA secondary structure based on the class information and Hopfield network. Zou Q; Zhao T; Liu Y; Guo M Comput Biol Med; 2009 Mar; 39(3):206-14. PubMed ID: 19215914 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Ichihara M; Murakumo Y; Masuda A; Matsuura T; Asai N; Jijiwa M; Ishida M; Shinmi J; Yatsuya H; Qiao S; Takahashi M; Ohno K Nucleic Acids Res; 2007; 35(18):e123. PubMed ID: 17884914 [TBL] [Abstract][Full Text] [Related]
19. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. Pan Y; Jiang J; Wang R; Cao H; Zhao J J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036 [TBL] [Abstract][Full Text] [Related]
20. Coding and non-coding DNA thermal stability differences in eukaryotes studied by melting simulation, base shuffling and DNA nearest neighbor frequency analysis. Long DD; Grosse I; Marx KA Biophys Chem; 2004 Jul; 110(1-2):25-38. PubMed ID: 15223141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]