BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16061509)

  • 1. Manipulation of ethanol production in anoxic rice coleoptiles by exogenous glucose determines rates of ion fluxes and provides estimates of energy requirements for cell maintenance during anoxia.
    Huang S; Ishizawa K; Greenway H; Colmer TD
    J Exp Bot; 2005 Sep; 56(419):2453-63. PubMed ID: 16061509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia.
    Colmer TD; Huang S; Greenway H
    J Exp Bot; 2001 Jul; 52(360):1507-17. PubMed ID: 11457911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings.
    Kurniasih B; Greenway H; Colmer TD
    Ann Bot; 2017 Jan; 119(1):129-142. PubMed ID: 27694332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-'intolerant', but not of a 'tolerant' genotype.
    Huang S; Greenway H; Colmer TD
    J Exp Bot; 2003 Oct; 54(391):2363-73. PubMed ID: 14504303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses by coleoptiles of intact rice seedlings to anoxia: k(+) net uptake from the external solution and translocation from the caryopses.
    Huang S; Greenway H; Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):271-8. PubMed ID: 12509347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth and energy utilization.
    Huang S; Greenway H; Colmer TD; Millar AH
    Ann Bot; 2005 Sep; 96(4):703-15. PubMed ID: 16027131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NOFormula.
    Greenway H; Kulichikhin KY; Cawthray GR; Colmer TD
    J Exp Bot; 2012 Mar; 63(5):1969-83. PubMed ID: 22174442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis.
    Edwards JM; Roberts TH; Atwell BJ
    J Exp Bot; 2012 Jul; 63(12):4389-402. PubMed ID: 22585748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia.
    Gibbs J; Morrell S; Valdez A; Setter TL; Greenway H
    J Exp Bot; 2000 Apr; 51(345):785-96. PubMed ID: 10938871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions.
    Kulichikhin KY; Greenway H; Byrne L; Colmer TD
    J Exp Bot; 2009; 60(7):2119-28. PubMed ID: 19363206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble sugar availability of aerobically germinated barley, oat and rice coleoptiles in anoxia.
    Kato-Noguchi H; Yasuda Y; Sasaki R
    J Plant Physiol; 2010 Dec; 167(18):1571-6. PubMed ID: 20727618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots.
    Mustroph A; Boamfa EI; Laarhoven LJ; Harren FJ; Albrecht G; Grimm B
    Planta; 2006 Dec; 225(1):103-14. PubMed ID: 16845530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanolic fermentation and anoxia tolerance in four rice cultivars.
    Kato-Noguchi H; Morokuma M
    J Plant Physiol; 2007 Feb; 164(2):168-73. PubMed ID: 16483690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.
    Shingaki-Wells RN; Huang S; Taylor NL; Carroll AJ; Zhou W; Millar AH
    Plant Physiol; 2011 Aug; 156(4):1706-24. PubMed ID: 21622811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of growth and patterns of gene expression in oxygen-deprived rice coleoptiles.
    Narsai R; Edwards JM; Roberts TH; Whelan J; Joss GH; Atwell BJ
    Plant J; 2015 Apr; 82(1):25-40. PubMed ID: 25650041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxia promotes gravitropic curvature in rice pulvini but inhibits it in wheat and oat pulvini.
    Azuma T; Inoue Y; Hamada Y; Okishio T; Sasayama D; Itoh K
    J Plant Physiol; 2013 Sep; 170(13):1158-64. PubMed ID: 23591078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression.
    Magneschi L; Kudahettige RL; Alpi A; Perata P
    Plant Biol (Stuttg); 2009 Jul; 11(4):561-73. PubMed ID: 19538394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptative response of Vitis root to anoxia.
    Mancuso S; Marras AM
    Plant Cell Physiol; 2006 Mar; 47(3):401-9. PubMed ID: 16418229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate metabolism in germinating caryopses of Oryza sativa L. exposed to prolonged anoxia.
    Pompeiano A; Guglielminetti L
    J Plant Res; 2016 Sep; 129(5):833-840. PubMed ID: 27289587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of anoxia with glucose addition for the enhanced production of hCTLA4Ig in transgenic rice suspension cell cultures.
    Kwon JY; Lee KH; Cheon SH; Kim DI
    Enzyme Microb Technol; 2012 May; 50(6-7):298-303. PubMed ID: 22500896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.