These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1606161)

  • 1. Analysis of ground-state and transition-state effects in enzyme catalysis.
    Menger FM
    Biochemistry; 1992 Jun; 31(23):5368-73. PubMed ID: 1606161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting ground-state and transition-state effects, the split-site model, and the "fundamentalist position" of enzyme catalysis.
    Murphy DJ
    Biochemistry; 1995 Apr; 34(14):4507-10. PubMed ID: 7718551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate ground state binding energy concentration is realized as transition state stabilization in physiological enzyme catalysis.
    Britt BM
    J Biochem Mol Biol; 2004 Sep; 37(5):533-7. PubMed ID: 15479615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.
    Warshel A; Strajbl M; Villà J; Florián J
    Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do enzymes bind their substrates in the ground state because of a physico-chemical requirement?
    Pascal R
    Bioorg Chem; 2003 Dec; 31(6):485-93. PubMed ID: 14613769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.
    Burschowsky D; van Eerde A; Ökvist M; Kienhöfer A; Kast P; Hilvert D; Krengel U
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17516-21. PubMed ID: 25422475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme free energy profiles: Can substrate binding be nonspontaneous? Can ground state interactions enhance catalysis?
    Silverstein TP
    Biophys Chem; 2021 Jul; 274():106606. PubMed ID: 33945990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A shifting specificity model for enzyme catalysis.
    Britt BM
    J Theor Biol; 1993 Sep; 164(2):181-90. PubMed ID: 8246515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition States and transition state analogue interactions with enzymes.
    Schramm VL
    Acc Chem Res; 2015 Apr; 48(4):1032-9. PubMed ID: 25848811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. For enzymes, bigger is better.
    Britt BM
    Biophys Chem; 1997 Nov; 69(1):63-70. PubMed ID: 9440209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state theoretical interpretation of the catalytic power of pyruvate decarboxylases: the roles of static and dynamical considerations.
    Hong J; Sun S; Derrick T; Larive C; Schowen KB; Schowen RL
    Biochim Biophys Acta; 1998 Jun; 1385(2):187-200. PubMed ID: 9655907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
    Narlikar GJ; Gopalakrishnan V; McConnell TS; Usman N; Herschlag D
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3668-72. PubMed ID: 7731962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A perspective on biological catalysis.
    Cannon WR; Singleton SF; Benkovic SJ
    Nat Struct Biol; 1996 Oct; 3(10):821-33. PubMed ID: 8836096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Negative' and 'positive catalysis': complementary principles that shape the catalytic landscape of enzymes.
    Vögeli B; Erb TJ
    Curr Opin Chem Biol; 2018 Dec; 47():94-100. PubMed ID: 30268906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.