These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1606161)

  • 21. Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization.
    Strajbl M; Shurki A; Kato M; Warshel A
    J Am Chem Soc; 2003 Aug; 125(34):10228-37. PubMed ID: 12926945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rethinking fundamentals of enzyme action.
    Northrop DB
    Adv Enzymol Relat Areas Mol Biol; 1999; 73():25-55, ix. PubMed ID: 10218105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme-substrate binding.
    Chen D; Li Y; Li X; Hong X; Fan X; Savidge T
    Chem Sci; 2022 Jul; 13(27):8193-8202. PubMed ID: 35919436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical QM/MM studies of enzymatic pericyclic reactions.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Interdiscip Sci; 2010 Mar; 2(1):115-31. PubMed ID: 20640801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical insights in enzyme catalysis.
    Martí S; Roca M; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chem Soc Rev; 2004 Feb; 33(2):98-107. PubMed ID: 14767505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induced-fit catalysis of corannulene bowl-to-bowl inversion.
    Juríček M; Strutt NL; Barnes JC; Butterfield AM; Dale EJ; Baldridge KK; Stoddart JF; Siegel JS
    Nat Chem; 2014 Mar; 6(3):222-8. PubMed ID: 24557137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic and extrathermodynamic requirements of enzyme catalysis.
    Wolfenden R
    Biophys Chem; 2003 Sep; 105(2-3):559-72. PubMed ID: 14499918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The catalytic power of enzymes: conformational selection or transition state stabilization?
    Giraldo J; Roche D; Rovira X; Serra J
    FEBS Lett; 2006 Apr; 580(9):2170-7. PubMed ID: 16616138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis.
    Fersht AR
    Biochemistry; 1987 Dec; 26(25):8031-7. PubMed ID: 3442641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition-state stabilization as a measure of the efficiency of antibody catalysis.
    Stewart JD; Benkovic SJ
    Nature; 1995 Jun; 375(6530):388-91. PubMed ID: 7760931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds.
    Warshel A; Papazyan A
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13665-70. PubMed ID: 8942991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic role of enzymes: short strong H-bond-induced partial proton shuttles and charge redistributions.
    Kim KS; Oh KS; Lee JY
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6373-8. PubMed ID: 10841545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature effects on the catalytic efficiency, rate enhancement, and transition state affinity of cytidine deaminase, and the thermodynamic consequences for catalysis of removing a substrate "anchor".
    Snider MJ; Gaunitz S; Ridgway C; Short SA; Wolfenden R
    Biochemistry; 2000 Aug; 39(32):9746-53. PubMed ID: 10933791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction vs Preorganization in Enzyme Catalysis. A Dispute That Calls for Resolution.
    Menger FM; Nome F
    ACS Chem Biol; 2019 Jul; 14(7):1386-1392. PubMed ID: 31150194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.