These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16061816)

  • 1. Directed evolution of protein switches and their application to the creation of ligand-binding proteins.
    Guntas G; Mansell TJ; Kim JR; Ostermeier M
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11224-9. PubMed ID: 16061816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch.
    Kim JR; Ostermeier M
    Arch Biochem Biophys; 2006 Feb; 446(1):44-51. PubMed ID: 16384549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand binding and allostery can emerge simultaneously.
    Liang J; Kim JR; Boock JT; Mansell TJ; Ostermeier M
    Protein Sci; 2007 May; 16(5):929-37. PubMed ID: 17400921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular switch created by in vitro recombination of nonhomologous genes.
    Guntas G; Mitchell SF; Ostermeier M
    Chem Biol; 2004 Nov; 11(11):1483-7. PubMed ID: 15555998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism.
    Wright CM; Majumdar A; Tolman JR; Ostermeier M
    Proteins; 2010 May; 78(6):1423-30. PubMed ID: 20034108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro recombination of non-homologous genes can result in gene fusions that confer a switching phenotype to cells.
    Heins RA; Choi JH; Sohka T; Ostermeier M
    PLoS One; 2011; 6(11):e27302. PubMed ID: 22096548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-allosteric enzyme switches possess larger effector-induced changes in thermodynamic stability than their non-switch analogs.
    Choi JH; San A; Ostermeier M
    Protein Sci; 2013 Apr; 22(4):475-85. PubMed ID: 23400970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between effector binding and allostery in an engineered protein switch.
    Choi JH; Xiong T; Ostermeier M
    Protein Sci; 2016 Sep; 25(9):1605-16. PubMed ID: 27272021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering switches, genetically.
    Roberts RW
    Chem Biol; 2004 Nov; 11(11):1475-6. PubMed ID: 15555994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular protein switches derived from antibody mimetic proteins.
    Nicholes N; Date A; Beaujean P; Hauk P; Kanwar M; Ostermeier M
    Protein Eng Des Sel; 2016 Feb; 29(2):77-85. PubMed ID: 26637825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating a bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding protein.
    Betton JM; Jacob JP; Hofnung M; Broome-Smith JK
    Nat Biotechnol; 1997 Nov; 15(12):1276-9. PubMed ID: 9359111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic protein switches built from paralogous input domains.
    Tullman J; Nicholes N; Dumont MR; Ribeiro LF; Ostermeier M
    Biotechnol Bioeng; 2016 Apr; 113(4):852-8. PubMed ID: 26461040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of an allosteric enzyme by domain insertion.
    Guntas G; Ostermeier M
    J Mol Biol; 2004 Feb; 336(1):263-73. PubMed ID: 14741221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase.
    Volkov AN; Barrios H; Mathonet P; Evrard C; Ubbink M; Declercq JP; Soumillion P; Fastrez J
    Chembiochem; 2011 Apr; 12(6):904-13. PubMed ID: 21425229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-tethered protein switches.
    Zayats M; Kanwar M; Ostermeier M; Searson PC
    Chem Commun (Camb); 2011 Mar; 47(12):3398-400. PubMed ID: 21331440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic protein switches: design principles and applications.
    Stein V; Alexandrov K
    Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding mechanics of maltose binding protein.
    Bertz M; Rief M
    J Mol Biol; 2009 Nov; 393(5):1097-105. PubMed ID: 19733183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity.
    van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M
    FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag.
    Nallamsetty S; Waugh DS
    Nat Protoc; 2007; 2(2):383-91. PubMed ID: 17406599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping transient partial unfolding by protein engineering and native-state proteolysis.
    Chang Y; Park C
    J Mol Biol; 2009 Oct; 393(2):543-56. PubMed ID: 19683000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.