These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16061816)

  • 21. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
    Mathieu V; Fastrez J; Soumillion P
    Protein Eng Des Sel; 2010 Sep; 23(9):699-709. PubMed ID: 20591901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolving Lac repressor for enhanced inducibility.
    Satya Lakshmi O; Rao NM
    Protein Eng Des Sel; 2009 Feb; 22(2):53-8. PubMed ID: 19029094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution.
    Doi N; Yanagawa H
    FEBS Lett; 1999 Jun; 453(3):305-7. PubMed ID: 10405165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An engineered calmodulin-based allosteric switch for Peptide biosensing.
    Meister GE; Joshi NS
    Chembiochem; 2013 Aug; 14(12):1460-7. PubMed ID: 23825049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins.
    Rizk SS; Paduch M; Heithaus JH; Duguid EM; Sandstrom A; Kossiakoff AA
    Nat Struct Mol Biol; 2011 Apr; 18(4):437-42. PubMed ID: 21378967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of protein switches based on an ensemble model of allostery.
    Choi JH; Laurent AH; Hilser VJ; Ostermeier M
    Nat Commun; 2015 Apr; 6():6968. PubMed ID: 25902417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of an engineered β-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation.
    Ke W; Laurent AH; Armstrong MD; Chen Y; Smith WE; Liang J; Wright CM; Ostermeier M; van den Akker F
    PLoS One; 2012; 7(6):e39168. PubMed ID: 22720063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competitive interactions of ligands and macromolecular crowders with maltose binding protein.
    Miklos AC; Sumpter M; Zhou HX
    PLoS One; 2013; 8(10):e74969. PubMed ID: 24124463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of a maltose receptor into a zinc biosensor by computational design.
    Marvin JS; Hellinga HW
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4955-60. PubMed ID: 11320244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving evolution.
    Rusk N
    Nat Methods; 2006 Apr; 3(4):242. PubMed ID: 16578929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing heterotropically activated allosteric conformational switches using supercharging.
    Schnatz PJ; Brisendine JM; Laing CC; Everson BH; French CA; Molinaro PM; Koder RL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5291-5297. PubMed ID: 32098845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single-molecule dissection of ligand binding to a protein with intrinsic dynamics.
    Kim E; Lee S; Jeon A; Choi JM; Lee HS; Hohng S; Kim HS
    Nat Chem Biol; 2013 May; 9(5):313-8. PubMed ID: 23502425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior.
    Choi JH; Ostermeier M
    ACS Synth Biol; 2015 Apr; 4(4):400-6. PubMed ID: 25144732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined and Iterative Use of Computational Design and Directed Evolution for Protein-Ligand Binding Design.
    Wang M; Zhao H
    Methods Mol Biol; 2016; 1414():139-53. PubMed ID: 27094289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective gene amplification.
    Kelly BT; Griffiths AD
    Protein Eng Des Sel; 2007 Dec; 20(12):577-81. PubMed ID: 18055506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The high-affinity maltose switch MBP317-347 has low affinity for glucose: implications for targeting tumors with metabolically directed enzyme prodrug therapy.
    Valdes G; Schulte RW; Ostermeier M; Iwamoto KS
    Chem Biol Drug Des; 2014 Mar; 83(3):266-71. PubMed ID: 24131788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repurposing a bacterial prolidase for organophosphorus hydrolysis: Reshaped catalytic cavity switches substrate selectivity.
    Yang J; Xiao YZ; Li R; Liu Y; Long LJ
    Biotechnol Bioeng; 2020 Sep; 117(9):2694-2702. PubMed ID: 32515491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Creation of Antigen-Dependent β-Lactamase Fusion Protein Tethered by Circularly Permuted Antibody Variable Domains.
    Iwai H; Kojima-Misaizu M; Dong J; Ueda H
    Methods Mol Biol; 2017; 1596():149-165. PubMed ID: 28293886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering and design of ligand-induced conformational change in proteins.
    Mizoue LS; Chazin WJ
    Curr Opin Struct Biol; 2002 Aug; 12(4):459-63. PubMed ID: 12163068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.