These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1607233)

  • 1. Isocapnia blocks exercise-induced reductions in ocular tension.
    Harris A; Malinovsky VE; Cantor LB; Henderson PA; Martin BJ
    Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2229-32. PubMed ID: 1607233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular pressure increases in parallel with systemic blood pressure during isometric exercise.
    Bakke EF; Hisdal J; Semb SO
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):760-4. PubMed ID: 18836162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlates of acute exercise-induced ocular hypotension.
    Harris A; Malinovsky V; Martin B
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3852-7. PubMed ID: 7928182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocular hypotension during short- and long-term hypocapnia.
    Harris A; Malinovsky V; Martin BJ
    J Glaucoma; 1994; 3(3):226-31. PubMed ID: 19920601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acute increase in blood pressure on intraocular pressure in pigs and humans.
    Castejon H; Chiquet C; Savy O; Baguet JP; Khayi H; Tamisier R; Bourdon L; Romanet JP
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1599-605. PubMed ID: 19850831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exercise on intraocular pressure and ocular blood flow: a review.
    Risner D; Ehrlich R; Kheradiya NS; Siesky B; McCranor L; Harris A
    J Glaucoma; 2009 Aug; 18(6):429-36. PubMed ID: 19680049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of exercise-induced ocular hypotension.
    Martin B; Harris A; Hammel T; Malinovsky V
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):1011-5. PubMed ID: 10102302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial keratotomy does not affect intraocular pressure.
    Sastry SM; Sperduto RD; Waring GO; Remaley NA; Lynn MJ; Blanco E; Miller DN
    Refract Corneal Surg; 1993; 9(6):459-64. PubMed ID: 8117645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of exercise-induced hyperventilation on airway resistance and cycling endurance.
    Kohl J; Koller EA; Brandenberger M; Cardenas M; Boutellier U
    Eur J Appl Physiol Occup Physiol; 1997; 75(4):305-11. PubMed ID: 9134361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy.
    Awad H; Santilli S; Ohr M; Roth A; Yan W; Fernandez S; Roth S; Patel V
    Anesth Analg; 2009 Aug; 109(2):473-8. PubMed ID: 19608821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of changes in optic nerve head circulation after acute reduction in intraocular pressure.
    Takayama J; Tomidokoro A; Tamaki Y; Araie M
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1409-19. PubMed ID: 15790909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients.
    Wells AP; Garway-Heath DF; Poostchi A; Wong T; Chan KC; Sachdev N
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3262-8. PubMed ID: 18316697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise-induced depression of the diaphragm motor evoked potential is not affected by non-invasive ventilation.
    Dayer MJ; Jonville S; Chatwin M; Swallow EB; Porcher R; Sharshar T; Ross ET; Hopkinson NS; Moxham J; Polkey MI
    Respir Physiol Neurobiol; 2007 Mar; 155(3):243-54. PubMed ID: 16914394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia following voluntary hyperventilation during exercise in man.
    Cummin AR; Telford RJ; Saunders KB
    Respir Physiol; 1991 May; 84(2):199-207. PubMed ID: 1908600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure.
    Polska E; Simader C; Weigert G; Doelemeyer A; Kolodjaschna J; Scharmann O; Schmetterer L
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3768-74. PubMed ID: 17652750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow.
    Hartley GL; Watson CL; Ainslie PN; Tokuno CD; Greenway MJ; Gabriel DA; O'Leary DD; Cheung SS
    J Physiol; 2016 Jun; 594(12):3423-37. PubMed ID: 26836470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A comparison study of pulsitile ocular blood flow in normal eyes and primary open angle glaucoma].
    Zhang MZ; Fu ZF; Liu XR; Zheng C
    Zhonghua Yan Ke Za Zhi; 2004 Apr; 40(4):250-3. PubMed ID: 15268833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparative cardiovascular, pulmonary, ocular blood flow, and ocular hypotensive effects of topical travoprost, bimatoprost, brimonidine, and betaxolol.
    Inan UU; Ermis SS; Orman A; Onrat E; Yucel A; Ozturk F; Asagidag A; Celik A
    J Ocul Pharmacol Ther; 2004 Aug; 20(4):293-310. PubMed ID: 15321024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.