BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 1607373)

  • 1. Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces.
    Johnson SD; Anderson JM; Marchant RE
    J Biomed Mater Res; 1992 Jul; 26(7):915-35. PubMed ID: 1607373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hydrophilic plasma polymerized film composite with potential application as an interface for biomaterials.
    Marchant RE; Johnson SD; Schneider BH; Agger MP; Anderson JM
    J Biomed Mater Res; 1990 Nov; 24(11):1521-37. PubMed ID: 2279984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of IL-1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models.
    Miller KM; Rose-Caprara V; Anderson JM
    J Biomed Mater Res; 1989 Sep; 23(9):1007-26. PubMed ID: 2528548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design.
    Hezi-Yamit A; Sullivan C; Wong J; David L; Chen M; Cheng P; Shumaker D; Wilcox JN; Udipi K
    J Biomed Mater Res A; 2009 Jul; 90(1):133-41. PubMed ID: 18491390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications.
    Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F
    Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers.
    Miller KM; Anderson JM
    J Biomed Mater Res; 1989 Aug; 23(8):911-30. PubMed ID: 2528547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Ti-(Ca,Zr)-(C,N,O,P) films for load-bearing implants.
    Shtansky DV; Gloushankova NA; Bashkova IA; Kharitonova MA; Moizhess TG; Sheveiko AN; Kiryukhantsev-Korneev FV; Petrzhik MI; Levashov EA
    Biomaterials; 2006 Jul; 27(19):3519-31. PubMed ID: 16530825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment.
    Davidson MR; Mitchell SA; Bradley RH
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):213-9. PubMed ID: 15261060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cultivation of human cells on polymer covered biomaterial--a new concept to improve the implant characteristics. Results of an in-vitro-investigation].
    Pierkes M; Chang BJ; Alt D; Prucker O; Rühe J; Dahm M
    Herz; 2004 May; 29(3):341-7. PubMed ID: 15167962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast.
    Wang YW; Yang F; Wu Q; Cheng YC; Yu PH; Chen J; Chen GQ
    Biomaterials; 2005 Mar; 26(7):755-61. PubMed ID: 15350780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and stability of disulfide-crosslinked hyaluronan films.
    Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Aug; 26(23):4737-46. PubMed ID: 15763253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro positive biocompatibility evaluation of glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors.
    Serrano MC; Portolés M; Pagani R; de Guinoa JS; Ruiz-Hernández E; Arcos D; Vallet-Regí M
    Tissue Eng Part A; 2008 May; 14(5):617-27. PubMed ID: 18399731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of L-ascorbic acid to L929 fibroblast cultures: relevance to biocompatibility testing of materials for use in wound management.
    Schmidt RJ; Chung LY; Andrews AM; Turner TD
    J Biomed Mater Res; 1993 Apr; 27(4):521-30. PubMed ID: 8463353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the biocompatibility of novel terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate).
    Liang YS; Zhao W; Chen GQ
    J Biomed Mater Res A; 2008 Nov; 87(2):441-9. PubMed ID: 18186048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility testing of polymers: in vitro studies with in vivo correlation.
    Rice RM; Hegyeli AF; Gourlay SJ; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Jan; 12(1):43-54. PubMed ID: 632316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biocompatibility of self-assembled brush polymers bearing glycine derivatives.
    Kim G; Rho Y; Park S; Kim H; Son S; Kim H; Kim IJ; Kim JR; Kim WJ; Ree M
    Biomaterials; 2010 May; 31(14):3816-26. PubMed ID: 20167363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films.
    Serrano MC; Pagani R; Peña J; Portolés MT
    Biomaterials; 2005 Oct; 26(29):5827-34. PubMed ID: 15949548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblast spreading.
    van der Valk P; van Pelt AW; Busscher HJ; de Jong HP; Wildevuur CR; Arends J
    J Biomed Mater Res; 1983 Sep; 17(5):807-17. PubMed ID: 6619177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.