These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 16075303)
1. Homology modeling and molecular interaction field studies of alpha-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors. Tomich CH; da Silva P; Carvalho I; Taft CA J Comput Aided Mol Des; 2005 Feb; 19(2):83-92. PubMed ID: 16075303 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided molecular design of novel glucosidase inhibitors for AIDS treatment. Silva CH; Taft CA J Biomol Struct Dyn; 2004 Aug; 22(1):59-63. PubMed ID: 15214806 [TBL] [Abstract][Full Text] [Related]
3. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of alpha-glucosidase inhibitors. Bharatham K; Bharatham N; Park KH; Lee KW J Mol Graph Model; 2008 Jun; 26(8):1202-12. PubMed ID: 18096420 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, in vitro and computational studies of 1,4-disubstituted 1,2,3-triazoles as potential α-glucosidase inhibitors. Jabeen F; Shehzadi SA; Fatmi MQ; Shaheen S; Iqbal L; Afza N; Panda SS; Ansari FL Bioorg Med Chem Lett; 2016 Feb; 26(3):1029-1038. PubMed ID: 26725952 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Wang G; He D; Li X; Li J; Peng Z Bioorg Chem; 2016 Apr; 65():167-74. PubMed ID: 26964016 [TBL] [Abstract][Full Text] [Related]
6. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Riaz S; Khan IU; Bajda M; Ashraf M; Qurat-Ul-Ain ; Shaukat A; Rehman TU; Mutahir S; Hussain S; Mustafa G; Yar M Bioorg Chem; 2015 Dec; 63():64-71. PubMed ID: 26451651 [TBL] [Abstract][Full Text] [Related]
7. Ultrasonic synthesis of tyramine derivatives as novel inhibitors of α-glucosidase in vitro. Siddiqui H; Bashir MA; Javaid K; Nizamani A; Bano H; Yousuf S; Rahman AU; Choudhary MI J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1392-403. PubMed ID: 26912275 [TBL] [Abstract][Full Text] [Related]
8. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties. 2. Freeman GA; Andrews Iii CW; Hopkins AL; Lowell GS; Schaller LT; Cowan JR; Gonzales SS; Koszalka GW; Hazen RJ; Boone LR; Ferris RG; Creech KL; Roberts GB; Short SA; Weaver K; Reynolds DJ; Milton J; Ren J; Stuart DI; Stammers DK; Chan JH J Med Chem; 2004 Nov; 47(24):5923-36. PubMed ID: 15537347 [TBL] [Abstract][Full Text] [Related]
10. Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. Simons JF; Ebersold M; Helenius A EMBO J; 1998 Jan; 17(2):396-405. PubMed ID: 9430631 [TBL] [Abstract][Full Text] [Related]
11. Protein promiscuity: drug resistance and native functions--HIV-1 case. Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167 [TBL] [Abstract][Full Text] [Related]
12. New anti-HIV agents and targets. De Clercq E Med Res Rev; 2002 Nov; 22(6):531-65. PubMed ID: 12369088 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Imran S; Taha M; Ismail NH; Kashif SM; Rahim F; Jamil W; Hariono M; Yusuf M; Wahab H Eur J Med Chem; 2015 Nov; 105():156-70. PubMed ID: 26491979 [TBL] [Abstract][Full Text] [Related]
14. 2-Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Javaid K; Saad SM; Rasheed S; Moin ST; Syed N; Fatima I; Salar U; Khan KM; Perveen S; Choudhary MI Bioorg Med Chem; 2015 Dec; 23(23):7417-21. PubMed ID: 26552899 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Zawawi NK; Taha M; Ahmat N; Ismail NH; Wadood A; Rahim F; Rehman AU Bioorg Chem; 2015 Dec; 63():36-44. PubMed ID: 26432614 [TBL] [Abstract][Full Text] [Related]
16. Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists. Kondru R; Zhang J; Ji C; Mirzadegan T; Rotstein D; Sankuratri S; Dioszegi M Mol Pharmacol; 2008 Mar; 73(3):789-800. PubMed ID: 18096812 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory activities of caffeoylquinic acid derivatives from Ilex kudingcha C.J. Tseng on α-glucosidase from Saccharomyces cerevisiae. Xu D; Wang Q; Zhang W; Hu B; Zhou L; Zeng X; Sun Y J Agric Food Chem; 2015 Apr; 63(14):3694-703. PubMed ID: 25805337 [TBL] [Abstract][Full Text] [Related]
18. Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. Fattorusso C; Gemma S; Butini S; Huleatt P; Catalanotti B; Persico M; De Angelis M; Fiorini I; Nacci V; Ramunno A; Rodriquez M; Greco G; Novellino E; Bergamini A; Marini S; Coletta M; Maga G; Spadari S; Campiani G J Med Chem; 2005 Nov; 48(23):7153-65. PubMed ID: 16279773 [TBL] [Abstract][Full Text] [Related]
20. Study on the interactions between diketo-acid inhibitors and prototype foamy virus integrase-DNA complex via molecular docking and comparative molecular dynamics simulation methods. Hu JP; He HQ; Tang DY; Sun GF; Zhang YQ; Fan J; Chang S J Biomol Struct Dyn; 2013; 31(7):734-47. PubMed ID: 22913375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]