BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 16075348)

  • 1. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review.
    Nichols CA; Guezennec J; Bowman JP
    Mar Biotechnol (NY); 2005; 7(4):253-71. PubMed ID: 16075348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities.
    Poli A; Anzelmo G; Nicolaus B
    Mar Drugs; 2010 Jun; 8(6):1779-802. PubMed ID: 20631870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.
    Rogers AD; Tyler PA; Connelly DP; Copley JT; James R; Larter RD; Linse K; Mills RA; Garabato AN; Pancost RD; Pearce DA; Polunin NV; German CR; Shank T; Boersch-Supan PH; Alker BJ; Aquilina A; Bennett SA; Clarke A; Dinley RJ; Graham AG; Green DR; Hawkes JA; Hepburn L; Hilario A; Huvenne VA; Marsh L; Ramirez-Llodra E; Reid WD; Roterman CN; Sweeting CJ; Thatje S; Zwirglmaier K
    PLoS Biol; 2012 Jan; 10(1):e1001234. PubMed ID: 22235194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antarctic marine biodiversity and deep-sea hydrothermal vents.
    Chown SL
    PLoS Biol; 2012 Jan; 10(1):e1001232. PubMed ID: 22235192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exopolysaccharides from extremophiles: from fundamentals to biotechnology.
    Nicolaus B; Kambourova M; Oner ET
    Environ Technol; 2010 Sep; 31(10):1145-58. PubMed ID: 20718297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of incubation temperature on growth and production of exopolysaccharides by an antarctic sea ice bacterium grown in batch culture.
    Nichols CM; Bowman JP; Guezennec J
    Appl Environ Microbiol; 2005 Jul; 71(7):3519-23. PubMed ID: 16000756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications.
    Casillo A; Lanzetta R; Parrilli M; Corsaro MM
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29461505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterization of exopolysaccharides from Antarctic marine bacteria.
    Nichols CM; Lardière SG; Bowman JP; Nichols PD; A E Gibson J; Guézennec J
    Microb Ecol; 2005 May; 49(4):578-89. PubMed ID: 16052372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecology of southern ocean pack ice.
    Brierley AS; Thomas DN
    Adv Mar Biol; 2002; 43():171-276. PubMed ID: 12154613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.
    He T; Zhang X
    Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial mercury methylation in Antarctic sea ice.
    Gionfriddo CM; Tate MT; Wick RR; Schultz MB; Zemla A; Thelen MP; Schofield R; Krabbenhoft DP; Holt KE; Moreau JW
    Nat Microbiol; 2016 Aug; 1(10):16127. PubMed ID: 27670112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.
    He T; Li H; Zhang X
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest?
    Guezennec J
    J Ind Microbiol Biotechnol; 2002 Oct; 29(4):204-8. PubMed ID: 12355321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications.
    Lo Giudice A; Poli A; Finore I; Rizzo C
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2923-2934. PubMed ID: 32076778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents.
    Hu SK; Herrera EL; Smith AR; Pachiadaki MG; Edgcomb VP; Sylva SP; Chan EW; Seewald JS; German CR; Huber JA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].
    Yu Y; Li HR; Chen B; Zeng YX; He JF
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):184-90. PubMed ID: 16736573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.
    Han D; Kang I; Ha HK; Kim HC; Kim OS; Lee BY; Cho JC; Hur HG; Lee YK
    PLoS One; 2014; 9(1):e86887. PubMed ID: 24497990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.
    Kato S; Takano Y; Kakegawa T; Oba H; Inoue K; Kobayashi C; Utsumi M; Marumo K; Kobayashi K; Ito Y; Ishibashi J; Yamagishi A
    Appl Environ Microbiol; 2010 May; 76(9):2968-79. PubMed ID: 20228114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.
    Torstensson A; Dinasquet J; Chierici M; Fransson A; Riemann L; Wulff A
    Environ Microbiol; 2015 Oct; 17(10):3869-81. PubMed ID: 25845501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents.
    Burgaud G; Le Calvez T; Arzur D; Vandenkoornhuyse P; Barbier G
    Environ Microbiol; 2009 Jun; 11(6):1588-600. PubMed ID: 19239486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.