These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16075546)

  • 1. Coupled Mach-Zehnder interferometer memory element.
    Hill MT; Dorren HJ; Leijtens XJ; den Besten JH; de Vries T; van Zantvoort JH; Smalbrugge E; Oei YS; Binsma JJ; Khoe GD; Smit MK
    Opt Lett; 2005 Jul; 30(13):1710-2. PubMed ID: 16075546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of D flip-flop and T flip-flop using Mach-Zehnder interferometers for high-speed communication.
    Kumar S; Singh G; Bisht A; Amphawan A
    Appl Opt; 2015 Jul; 54(21):6397-405. PubMed ID: 26367819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.
    Park JK; Takagi S; Takenaka M
    Opt Express; 2018 Feb; 26(4):4842-4852. PubMed ID: 29475329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic InP optical unitary converter based on multi-plane light conversion.
    Tanomura R; Tang R; Suganuma T; Okawa K; Kato E; Tanemura T; Nakano Y
    Opt Express; 2020 Aug; 28(17):25392-25399. PubMed ID: 32907061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical flip-flop based on an active Mach-Zehnder interferometer with a feedback loop.
    Clavero R; Ramos F; Martí J
    Opt Lett; 2005 Nov; 30(21):2861-3. PubMed ID: 16279450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control.
    Green W; Lee R; Derose G; Scherer A; Yariv A
    Opt Express; 2005 Mar; 13(5):1651-9. PubMed ID: 19495041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach-Zehnder photonic switch fabric.
    Liu K; Wang L; Zhang C; Ma Q; Qi B
    Appl Opt; 2018 May; 57(14):3838-3846. PubMed ID: 29791350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers.
    Lu L; Zhou L; Li X; Chen J
    Opt Lett; 2014 Mar; 39(6):1633-6. PubMed ID: 24690856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.
    Cong GW; Matsukawa T; Chiba T; Tadokoro H; Yanagihara M; Ohno M; Kawashima H; Kuwatsuka H; Igarashi Y; Masahara M; Ishikawa H
    Opt Express; 2013 Mar; 21(6):6889-94. PubMed ID: 23546071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform.
    Ikku Y; Yokoyama M; Ichikawa O; Hata M; Takenaka M; Takagi S
    Opt Express; 2012 Dec; 20(26):B357-64. PubMed ID: 23262873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast low-power optical memory based on coupled micro-ring lasers.
    Hill MT; Dorren HJ; De Vries T; Leijtens XJ; Den Besten JH; Smalbrugge B; Oei YS; Binsma H; Khoe GD; Smit MK
    Nature; 2004 Nov; 432(7014):206-9. PubMed ID: 15538365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach-Zehnder silicon photonic switch.
    Dupuis N; Rylyakov AV; Schow CL; Kuchta DM; Baks CW; Orcutt JS; Gill DM; Green WM; Lee BG
    Opt Lett; 2016 Jul; 41(13):3002-5. PubMed ID: 27367086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter.
    Li Q; Han JH; Ho CP; Takagi S; Takenaka M
    Opt Express; 2018 Dec; 26(26):35003-35012. PubMed ID: 30650915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-optical logic using dual-nanobeam Mach-Zehnder interferometer switches.
    Ying Z; Soref R
    Opt Express; 2021 Apr; 29(9):12801-12812. PubMed ID: 33985029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-optically switchable spatial-mode entangled photon pairs using a modified Mach-Zehnder interferometer.
    Lugani J; Ghosh S; Thyagarajan K
    Opt Lett; 2012 Sep; 37(17):3729-31. PubMed ID: 22941005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 60  dB high-extinction auto-configured Mach-Zehnder interferometer.
    Wilkes CM; Qiang X; Wang J; Santagati R; Paesani S; Zhou X; Miller DA; Marshall GD; Thompson MG; O'Brien JL
    Opt Lett; 2016 Nov; 41(22):5318-5321. PubMed ID: 27842122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation.
    Liu CY; Chen LW
    Opt Express; 2004 Jun; 12(12):2616-24. PubMed ID: 19475102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer.
    Nayar BK; Finlayson N; Doran NJ; Davey ST; Williams DL; Arkwright JW
    Opt Lett; 1991 Mar; 16(6):408-10. PubMed ID: 19773949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.
    Fandiño JS; Muñoz P
    Opt Lett; 2013 Nov; 38(21):4316-9. PubMed ID: 24177082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor.
    Misiakos K; Raptis I; Makarona E; Botsialas A; Salapatas A; Oikonomou P; Psarouli A; Petrou PS; Kakabakos SE; Tukkiniemi K; Sopanen M; Jobst G
    Opt Express; 2014 Nov; 22(22):26803-13. PubMed ID: 25401827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.