These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 16076185)
1. Direct monitoring of metal ion transfer between two trafficking proteins. Ledwidge R; Soinski R; Miller SM J Am Chem Soc; 2005 Aug; 127(31):10842-3. PubMed ID: 16076185 [TBL] [Abstract][Full Text] [Related]
2. NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Ledwidge R; Patel B; Dong A; Fiedler D; Falkowski M; Zelikova J; Summers AO; Pai EF; Miller SM Biochemistry; 2005 Aug; 44(34):11402-16. PubMed ID: 16114877 [TBL] [Abstract][Full Text] [Related]
3. NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols. Ledwidge R; Hong B; Dötsch V; Miller SM Biochemistry; 2010 Oct; 49(41):8988-98. PubMed ID: 20828160 [TBL] [Abstract][Full Text] [Related]
4. X-ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs. Lian P; Guo HB; Riccardi D; Dong A; Parks JM; Xu Q; Pai EF; Miller SM; Wei DQ; Smith JC; Guo H Biochemistry; 2014 Nov; 53(46):7211-22. PubMed ID: 25343681 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes. Dutta SJ; Liu J; Mitra B Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943 [TBL] [Abstract][Full Text] [Related]
6. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746 [TBL] [Abstract][Full Text] [Related]
7. Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon. Schue M; Glendinning KJ; Hobman JL; Brown NL Biometals; 2008 Apr; 21(2):107-16. PubMed ID: 17457514 [TBL] [Abstract][Full Text] [Related]
8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the redox and metal binding activity of BsSco, a protein implicated in the assembly of cytochrome c oxidase. Imriskova-Sosova I; Andrews D; Yam K; Davidson D; Yachnin B; Hill BC Biochemistry; 2005 Dec; 44(51):16949-56. PubMed ID: 16363808 [TBL] [Abstract][Full Text] [Related]
10. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Liu J; Dutta SJ; Stemmler AJ; Mitra B Biochemistry; 2006 Jan; 45(3):763-72. PubMed ID: 16411752 [TBL] [Abstract][Full Text] [Related]
11. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione . Hong B; Nauss R; Harwood IM; Miller SM Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420 [TBL] [Abstract][Full Text] [Related]
12. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin. Picaud T; Desbois A Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105 [TBL] [Abstract][Full Text] [Related]
13. The role of humic non-exchangeable binding in the promotion of metal ion transport in groundwaters in the environment. Bryan ND; Jones DL; Keepax RE; Farrelly DH; Abrahamsen LG; Pitois A; Ivanov P; Warwick P; Evans N J Environ Monit; 2007 Apr; 9(4):329-47. PubMed ID: 17410308 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of metal binding by the toxic metal-sensing transcriptional repressor Staphylococcus aureus pI258 CadC. Busenlehner LS; Giedroc DP J Inorg Biochem; 2006 May; 100(5-6):1024-34. PubMed ID: 16487591 [TBL] [Abstract][Full Text] [Related]
15. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Dokmanić I; Sikić M; Tomić S Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620 [TBL] [Abstract][Full Text] [Related]
16. A force-spectroscopy-based single-molecule metal-binding assay. Cao Y; Er KS; Parhar R; Li H Chemphyschem; 2009 Jul; 10(9-10):1450-4. PubMed ID: 19514035 [TBL] [Abstract][Full Text] [Related]
17. Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health. Zeyaullah M; Nabi G; Malla R; Ali A Nepal Med Coll J; 2007 Sep; 9(3):182-5. PubMed ID: 18092437 [TBL] [Abstract][Full Text] [Related]
18. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
19. Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. Hiller DA; Rodriguez AM; Perona JJ J Mol Biol; 2005 Nov; 354(1):121-36. PubMed ID: 16236314 [TBL] [Abstract][Full Text] [Related]
20. Metal trafficking: from maintaining the metal homeostasis to future drug design. Ba LA; Doering M; Burkholz T; Jacob C Metallomics; 2009; 1(4):292-311. PubMed ID: 21305127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]