BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16076398)

  • 1. Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo.
    Dickey-Sims C; Robertson AJ; Rupp DE; McCarthy JJ; Coffman JA
    BMC Biol; 2005 Aug; 3():18. PubMed ID: 16076398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CBFbeta is a facultative Runx partner in the sea urchin embryo.
    Robertson AJ; Dickey-Sims C; Ransick A; Rupp DE; McCarthy JJ; Coffman JA
    BMC Biol; 2006 Feb; 4():4. PubMed ID: 16469111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos.
    Robertson AJ; Coluccio A; Knowlton P; Dickey-Sims C; Coffman JA
    PLoS One; 2008; 3(11):e3770. PubMed ID: 19020668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene.
    Coffman JA; Dickey-Sims C; Haug JS; McCarthy JJ; Robertson AJ
    BMC Biol; 2004 May; 2():6. PubMed ID: 15132741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo.
    Rizzo F; Coffman JA; Arnone MI
    Dev Biol; 2016 Aug; 416(1):173-186. PubMed ID: 27235147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression of SpRunt during sea urchin embryogenesis.
    Robertson AJ; Dickey CE; McCarthy JJ; Coffman JA
    Mech Dev; 2002 Sep; 117(1-2):327-30. PubMed ID: 12204279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos.
    Coffman JA; Kirchhamer CV; Harrington MG; Davidson EH
    Dev Biol; 1996 Feb; 174(1):43-54. PubMed ID: 8626020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental expression of cell-surface (glyco)proteins involved in gastrulation and spicule formation in sea urchin embryos.
    Grant SR; Farach MC; Decker GL; Woodward HD; Farach HA; Lennarz WJ
    Cold Spring Harb Symp Quant Biol; 1985; 50():91-8. PubMed ID: 3868512
    [No Abstract]   [Full Text] [Related]  

  • 9. SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos.
    Coffman JA; Kirchhamer CV; Harrington MG; Davidson EH
    Development; 1997 Dec; 124(23):4717-27. PubMed ID: 9428408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.
    Juliano CE; Yajima M; Wessel GM
    Dev Biol; 2010 Jan; 337(2):220-32. PubMed ID: 19878662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin D and cdk4 are required for normal development beyond the blastula stage in sea urchin embryos.
    Moore JC; Sumerel JL; Schnackenberg BJ; Nichols JA; Wikramanayake A; Wessel GM; Marzluff WF
    Mol Cell Biol; 2002 Jul; 22(13):4863-75. PubMed ID: 12052892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo.
    Arenas-Mena C; Cameron RA; Davidson EH
    Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptosis in sea urchin embryos.
    Roccheri MC; Barbata G; Cardinale F; Tipa C; Bosco L; Oliva OA; Cascino D; Giudice G
    Biochem Biophys Res Commun; 1997 Nov; 240(2):359-66. PubMed ID: 9388482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.
    Khurrum M; Hernandez A; Eskalaei M; Badali O; Coyle-Thompson C; Oppenheimer SB
    Acta Histochem; 2004; 106(2):97-106. PubMed ID: 15147630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
    Lin CY; Su YH
    Dev Biol; 2016 Jan; 409(2):420-8. PubMed ID: 26632489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic stage sensitivity to UV suppression of gastrulation in sea urchin embryos.
    Amemiya S; Yonemura S; Kinoshita S; Shiroya T
    Cell Differ; 1986 Jan; 18(1):45-9. PubMed ID: 3940661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo.
    Berg LK; Chen SW; Wessel GM
    Development; 1996 Feb; 122(2):703-13. PubMed ID: 8625821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.
    Kingsley PD; Angerer LM; Angerer RC
    Dev Biol; 1993 Jan; 155(1):216-34. PubMed ID: 8416835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the nanos homolog during sea urchin development.
    Fujii T; Sakamoto N; Ochiai H; Fujita K; Okamitsu Y; Sumiyoshi N; Minokawa T; Yamamoto T
    Dev Dyn; 2009 Oct; 238(10):2511-21. PubMed ID: 19705446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.