These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16076429)
1. Development of infrared optical sensor for selective detection of tyrosine in biological fluids. Huang GG; Yang J Biosens Bioelectron; 2005 Sep; 21(3):408-18. PubMed ID: 16076429 [TBL] [Abstract][Full Text] [Related]
2. alpha-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids. Lee CJ; Yang J Anal Biochem; 2006 Dec; 359(1):124-31. PubMed ID: 17046708 [TBL] [Abstract][Full Text] [Related]
3. Development of an aminocarboxylic acid-modified infrared chemical sensor for selective determination of tyrosine in urine. Lin HC; Chou YH; Yang J Anal Chim Acta; 2008 Jan; 606(2):230-8. PubMed ID: 18082655 [TBL] [Abstract][Full Text] [Related]
4. Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids. Wei YK; Yang J Talanta; 2007 Mar; 71(5):2007-14. PubMed ID: 19071556 [TBL] [Abstract][Full Text] [Related]
5. Selective detection of copper ions in aqueous solution based on an evanescent wave infrared absorption spectroscopic method. Huang GG; Yang J Anal Chem; 2003 May; 75(10):2262-9. PubMed ID: 12918965 [TBL] [Abstract][Full Text] [Related]
6. A universal biosensing platform based on optical micro-ring resonators. Ramachandran A; Wang S; Clarke J; Ja SJ; Goad D; Wald L; Flood EM; Knobbe E; Hryniewicz JV; Chu ST; Gill D; Chen W; King O; Little BE Biosens Bioelectron; 2008 Feb; 23(7):939-44. PubMed ID: 17964774 [TBL] [Abstract][Full Text] [Related]
7. Development of an aminocarboxylic acid-modified infrared chemical sensor for selective determination of copper ions in aqueous solutions. Lin HC; Chou YH; Yang J Anal Chim Acta; 2008 Mar; 611(1):89-96. PubMed ID: 18298972 [TBL] [Abstract][Full Text] [Related]
8. alpha-Cyclodextrin-modified infrared sensing system for rapidly determining the enantiomeric composition of chiral compounds. Lee CJ; Yang J Talanta; 2008 Feb; 74(5):1104-12. PubMed ID: 18371757 [TBL] [Abstract][Full Text] [Related]
9. Metal clad leaky waveguides for chemical and biosensing applications. Zourob M; Goddard NJ Biosens Bioelectron; 2005 Mar; 20(9):1718-27. PubMed ID: 15681186 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale porous silicon waveguide for label-free DNA sensing. Rong G; Najmaie A; Sipe JE; Weiss SM Biosens Bioelectron; 2008 May; 23(10):1572-6. PubMed ID: 18308536 [TBL] [Abstract][Full Text] [Related]
12. Label-free quantitative DNA detection using the liquid core optical ring resonator. Suter JD; White IM; Zhu H; Shi H; Caldwell CW; Fan X Biosens Bioelectron; 2008 Feb; 23(7):1003-9. PubMed ID: 18036809 [TBL] [Abstract][Full Text] [Related]
13. Polarimetric total internal reflection biosensing. Maisonneuve M; Song IH; Patskovsky S; Meunier M Opt Express; 2011 Apr; 19(8):7410-6. PubMed ID: 21503051 [TBL] [Abstract][Full Text] [Related]
14. Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Schmitt K; Schirmer B; Hoffmann C; Brandenburg A; Meyrueis P Biosens Bioelectron; 2007 May; 22(11):2591-7. PubMed ID: 17125988 [TBL] [Abstract][Full Text] [Related]
15. Label-free detection with the resonant mirror biosensor. Zourob M; Elwary S; Fan X; Mohr S; Goddard NJ Methods Mol Biol; 2009; 503():89-138. PubMed ID: 19151938 [TBL] [Abstract][Full Text] [Related]
16. A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Sanz V; de Marcos S; Galbán J Biosens Bioelectron; 2007 Jan; 22(6):956-64. PubMed ID: 16750620 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform near-infrared spectrometer using a corner-cube integrated prism scanning interferometer. Kiyokura T; Ito T; Sawada R Appl Spectrosc; 2004 Dec; 58(12):1447-51. PubMed ID: 15606958 [TBL] [Abstract][Full Text] [Related]