BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 16076487)

  • 1. Calcium gradients and exocytosis in bovine adrenal chromaffin cells.
    Marengo FD
    Cell Calcium; 2005 Aug; 38(2):87-99. PubMed ID: 16076487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells.
    Alvarez YD; Ibañez LI; Uchitel OD; Marengo FD
    Cell Calcium; 2008 Feb; 43(2):155-64. PubMed ID: 17561253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different secretory vesicles can be involved in depolarization-evoked exocytosis.
    Lukyanetz EA
    Biochem Biophys Res Commun; 2001 Nov; 288(4):844-8. PubMed ID: 11688985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A; Albillos A
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells.
    de Diego AM; Arnáiz-Cot JJ; Hernández-Guijo JM; Gandía L; García AG
    Acta Physiol (Oxf); 2008 Oct; 194(2):97-109. PubMed ID: 18485124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of Ca(2+)-dependent exocytosis in cultured astrocytes.
    Kreft M; Stenovec M; Rupnik M; Grilc S; Krzan M; Potokar M; Pangrsic T; Haydon PG; Zorec R
    Glia; 2004 May; 46(4):437-45. PubMed ID: 15095373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of asynchronous and train-evoked exocytosis in bovine adrenal chromaffin cells infected with a replication deficient adenovirus.
    Thiagarajan R; Wilhelm J; Tewolde T; Li Y; Rich MM; Engisch KL
    J Neurophysiol; 2005 Nov; 94(5):3278-91. PubMed ID: 16033942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane cycling after the excess retrieval mode of rapid endocytosis in mouse chromaffin cells.
    Perez Bay AE; Belingheri AV; Alvarez YD; Marengo FD
    Acta Physiol (Oxf); 2012 Mar; 204(3):403-18. PubMed ID: 21791014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role of calbindin-D28K in vesicular catecholamine release from mouse chromaffin cells.
    Westerink RH; Rook MB; Beekwilder JP; Wadman WJ
    J Neurochem; 2006 Oct; 99(2):628-40. PubMed ID: 16824046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells.
    Rosa JM; de Diego AM; Gandía L; García AG
    Biochem Biophys Res Commun; 2007 Jun; 357(4):834-9. PubMed ID: 17451644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I; Trus M; Cohen R; Yizhar O; Nussinovitch I; Atlas D
    J Neurochem; 2006 Apr; 97(1):116-27. PubMed ID: 16515555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism.
    Alés E; Tabares L; Poyato JM; Valero V; Lindau M; Alvarez de Toledo G
    Nat Cell Biol; 1999 May; 1(1):40-4. PubMed ID: 10559862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells.
    Alvarez YD; Marengo FD
    J Neurochem; 2011 Jan; 116(2):155-63. PubMed ID: 21073467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-step model for acetylcholine control of exocytosis via nicotinic receptors.
    Arnáiz-Cot JJ; de Diego AM; Hernández-Guijo JM; Gandía L; García AG
    Biochem Biophys Res Commun; 2008 Jan; 365(3):413-9. PubMed ID: 17981151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exocytosis of single chromaffin granules in cell-free inside-out membrane patches.
    Dernick G; Alvarez de Toledo G; Lindau M
    Nat Cell Biol; 2003 Apr; 5(4):358-62. PubMed ID: 12652310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells.
    Marengo FD; Monck JR
    Biophys J; 2003 Nov; 85(5):3397-417. PubMed ID: 14581241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells.
    Ohta T; Kai T; Ito S
    Brain Res; 2004 Dec; 1030(2):183-92. PubMed ID: 15571668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.