These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16076645)

  • 1. Functional proteomics: a promising approach to find novel components of the circadian system.
    Wagner V; Gessner G; Mittag M
    Chronobiol Int; 2005; 22(3):403-15. PubMed ID: 16076645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics.
    Wagner V; Mittag M
    Methods Mol Biol; 2009; 479():173-88. PubMed ID: 19083188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
    Iliev D; Voytsekh O; Schmidt EM; Fiedler M; Nykytenko A; Mittag M
    Plant Physiol; 2006 Oct; 142(2):797-806. PubMed ID: 16920878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydomonas proteomics.
    Rolland N; Atteia A; Decottignies P; Garin J; Hippler M; Kreimer G; Lemaire SD; Mittag M; Wagner V
    Curr Opin Microbiol; 2009 Jun; 12(3):285-91. PubMed ID: 19451016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii.
    Naumann B; Busch A; Allmer J; Ostendorf E; Zeller M; Kirchhoff H; Hippler M
    Proteomics; 2007 Nov; 7(21):3964-79. PubMed ID: 17922516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis thaliana proteomics: from proteome to genome.
    Baginsky S; Gruissem W
    J Exp Bot; 2006; 57(7):1485-91. PubMed ID: 16551684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1.
    Kevei E; Gyula P; Fehér B; Tóth R; Viczián A; Kircher S; Rea D; Dorjgotov D; Schäfer E; Millar AJ; Kozma-Bognár L; Nagy F
    Curr Biol; 2007 Sep; 17(17):1456-64. PubMed ID: 17683937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis.
    Zhang X; Chen Y; Wang ZY; Chen Z; Gu H; Qu LJ
    Plant J; 2007 Aug; 51(3):512-25. PubMed ID: 17587236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.
    Crespo JL; Díaz-Troya S; Florencio FJ
    Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana.
    Ito S; Niwa Y; Nakamichi N; Kawamura H; Yamashino T; Mizuno T
    Plant Cell Physiol; 2008 Feb; 49(2):201-13. PubMed ID: 18178585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii.
    Förster B; Mathesius U; Pogson BJ
    Proteomics; 2006 Aug; 6(15):4309-20. PubMed ID: 16800035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian proteomics of the mouse retina.
    Tsuji T; Hirota T; Takemori N; Komori N; Yoshitane H; Fukuda M; Matsumoto H; Fukada Y
    Proteomics; 2007 Oct; 7(19):3500-8. PubMed ID: 17726681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythms: rho-related signals in time-specific light perception.
    Kolmos E; Davis SJ
    Curr Biol; 2007 Sep; 17(18):R808-10. PubMed ID: 17878051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii.
    Turkina MV; Blanco-Rivero A; Vainonen JP; Vener AV; Villarejo A
    Proteomics; 2006 May; 6(9):2693-704. PubMed ID: 16572472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C.
    Heide H; Nordhues A; Drepper F; Nick S; Schulz-Raffelt M; Haehnel W; Schroda M
    Proteomics; 2009 Jun; 9(11):3079-89. PubMed ID: 19526558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis.
    Sadre R; Gruber J; Frentzen M
    FEBS Lett; 2006 Oct; 580(22):5357-62. PubMed ID: 16989822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant biology: time for growth.
    Breton G; Kay SA
    Nature; 2007 Jul; 448(7151):265-6. PubMed ID: 17637650
    [No Abstract]   [Full Text] [Related]  

  • 19. Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii.
    Balczun C; Bunse A; Hahn D; Bennoun P; Nickelsen J; Kück U
    Plant J; 2005 Sep; 43(5):636-48. PubMed ID: 16115062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii.
    Wagner V; Fiedler M; Markert C; Hippler M; Mittag M
    FEBS Lett; 2004 Feb; 559(1-3):129-35. PubMed ID: 14960320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.