These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1607666)

  • 1. Comparative toxicity of the HD-1 and NRD-12 strains of Bacillus thuringiensis subsp. kurstaki to defoliating forest Lepidoptera.
    van Frankenhuyzen K; Milne R; Brousseau R; Masson L
    J Invertebr Pathol; 1992 Mar; 59(2):149-54. PubMed ID: 1607666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity to Spodoptera exigua and Trichoplusia ni of individual P1 protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12.
    Moar WJ; Masson L; Brousseau R; Trumble JT
    Appl Environ Microbiol; 1990 Aug; 56(8):2480-3. PubMed ID: 2403254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of Activated CryIA Proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for Defoliating Forest Lepidoptera.
    van Frankenhuyzen K; Gringorten JL; Milne RE; Gauthier D; Pusztai M; Brousseau R; Masson L
    Appl Environ Microbiol; 1991 Jun; 57(6):1650-1655. PubMed ID: 16348504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki CryIA(c) toxins.
    Von Tersch MA; Robbins HL; Jany CS; Johnson TB
    Appl Environ Microbiol; 1991 Feb; 57(2):349-58. PubMed ID: 2014985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera).
    Milne R; Liu Y; Gauthier D; van Frankenhuyzen K
    J Invertebr Pathol; 2008 Oct; 99(2):166-72. PubMed ID: 18585733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm.
    van Frankenhuyzen K; Liu Y; Tonon A
    J Invertebr Pathol; 2010 Feb; 103(2):124-31. PubMed ID: 20035766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of spores and extracellular proteins from six Cry+ strains and a Cry- strain of Bacillus thuringiensis subsp. kurstaki against the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae).
    Kalmykova G; Burtseva L; Milne R; van Frankenhuyzen K
    Can J Microbiol; 2009 May; 55(5):536-43. PubMed ID: 19483782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity spectra of Bacillus thuringiensis delta-endotoxins against eight insect cell lines.
    Gringorten JL; Sohi SS; Masson L
    In Vitro Cell Dev Biol Anim; 1999 May; 35(5):299-303. PubMed ID: 10475277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the individual protoxin components in P1 crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1.
    Masson L; Préfontaine G; Péloquin L; Lau PC; Brousseau R
    Biochem J; 1990 Jul; 269(2):507-12. PubMed ID: 2167072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.
    Johnson DE; Brookhart GL; Kramer KJ; Barnett BD; McGaughey WH
    J Invertebr Pathol; 1990 Mar; 55(2):235-44. PubMed ID: 2181026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The occurrence, biodiversity and toxicity of Bacillus thuringiensis strains isolated from the insect pest Lymantria dispar (Poland).
    Guz K; Bugla-Płoskońska G; Doroszkiewicz W
    Pol J Microbiol; 2009; 58(2):155-61. PubMed ID: 19824400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular toxicities and membrane binding characteristics of insecticidal crystal proteins from Bacillus thuringiensis toward cultured insect cells.
    Johnson DE
    J Invertebr Pathol; 1994 Mar; 63(2):123-9. PubMed ID: 8176242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A.
    Yue C; Sun M; Yu Z
    Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple method for the isolation of the antilepidopteran toxin from Bacillus thuringiensis subsp. kurstaki.
    Venkateswerlu G; Stotzky G
    Biotechnol Appl Biochem; 1990 Jun; 12(3):245-51. PubMed ID: 2360990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects.
    Aronson AI; Han ES; McGaughey W; Johnson D
    Appl Environ Microbiol; 1991 Apr; 57(4):981-6. PubMed ID: 2059054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions among white spruce tannins, Bacillus thuringiensis subsp. kurstaki, and spruce budworm (Lepidoptera: Tortricidae), on larval survival, growth, and development.
    Bauce E; Kumbasli M; Van Frankenhuyzen K; Carisey N
    J Econ Entomol; 2006 Dec; 99(6):2038-47. PubMed ID: 17195671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets.
    Navon A; Klein M; Braun S
    J Invertebr Pathol; 1990 May; 55(3):387-93. PubMed ID: 2351843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance of resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia ni.
    Janmaat AF; Wang P; Kain W; Zhao JZ; Myers J
    Appl Environ Microbiol; 2004 Oct; 70(10):5859-67. PubMed ID: 15466525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae).
    Tabashnik BE; Finson N; Johnson MW; Moar WJ
    Appl Environ Microbiol; 1993 May; 59(5):1332-5. PubMed ID: 16348929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.