BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 16076710)

  • 1. Expression of mucins in mucoid otitis media.
    Lin J; Tsuboi Y; Rimell F; Liu G; Toyama K; Kawano H; Paparella MM; Ho SB
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):384-93. PubMed ID: 14690056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial products alter the expression of membrane-associated mucin and antimicrobial peptides in a three-dimensional human endocervical epithelial cell model.
    Radtke AL; Quayle AJ; Herbst-Kralovetz MM
    Biol Reprod; 2012 Jun; 87(6):132. PubMed ID: 23053434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps and asthma comorbidity using bioinformatics approaches.
    Wang M; Tang S; Yang X; Xie X; Luo Y; He S; Li X; Feng X
    Front Immunol; 2022; 13():941547. PubMed ID: 36059464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-Related Increase of Collagen/Fibrin Deposition and High PAI-1 Production in Human Nasal Polyps.
    Jo A; Choi TG; Han JY; Tabor MH; Kolliputi N; Lockey RF; Cho SH
    Front Pharmacol; 2022; 13():845324. PubMed ID: 35712705
    [No Abstract]   [Full Text] [Related]  

  • 5. Advances in the Knowledge of the Underlying Airway Remodeling Mechanisms in Chronic Rhinosinusitis Based on the Endotypes: A Review.
    Lee K; Tai J; Lee SH; Kim TH
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of MUC2, MUC5AC and MUC5B genes with the recurrence of nasal polyps.
    Liu L; Yan C; Tao S
    Exp Ther Med; 2020 Aug; 20(2):1808-1814. PubMed ID: 32742413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of Lactococcus lactis (probiotic nasal rinse) co-culture on growth of patient-derived strains of Pseudomonas aeruginosa.
    Cho DY; Skinner D; Lim DJ; Mclemore JG; Koch CG; Zhang S; Swords WE; Hunter R; Crossman DK; Crowley MR; Grayson JW; Rowe SM; Woodworth BA
    Int Forum Allergy Rhinol; 2020 Apr; 10(4):444-449. PubMed ID: 31922358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Expression of Mucins in Murine Olfactory Versus Respiratory Epithelium.
    Kennel C; Gould EA; Larson ED; Salcedo E; Vickery T; Restrepo D; Ramakrishnan VR
    Chem Senses; 2019 Sep; 44(7):511-521. PubMed ID: 31300812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway.
    Xia W; Bai J; Wu X; Wei Y; Feng S; Li L; Zhang J; Xiong G; Fan Y; Shi J; Li H
    PLoS One; 2014; 9(6):e98915. PubMed ID: 24892823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mucin gene expression in reflux laryngeal mucosa: histological and in situ hybridization observations.
    Ali Mel-S; Bulmer DM; Dettmar PW; Pearson JP
    Int J Otolaryngol; 2014; 2014():264075. PubMed ID: 24790604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fungi and eosinophils on mucin gene expression in rhinovirus-infected nasal epithelial cells.
    Shin SH; Ye MK; Kim JK
    Allergy Asthma Immunol Res; 2014 Mar; 6(2):149-55. PubMed ID: 24587952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis.
    Jung JH; Kang IG; Kim DY; Hwang YJ; Kim ST
    J Ginseng Res; 2013 Apr; 37(2):167-75. PubMed ID: 23717169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asian sand dust enhances allergen-induced th2 allergic inflammatory changes and mucin production in BALB/c mouse lungs.
    Kang IG; Jung JH; Kim ST
    Allergy Asthma Immunol Res; 2012 Jul; 4(4):206-13. PubMed ID: 22754714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humanized mouse model used to monitor MUC gene expression in nasal polyps and to preclinically evaluate the efficacy of montelukast in reducing mucus production.
    Bernstein JM; Lehman H; Lis M; Sands A; Wilding GE; Shultz L; Bankert R; Bobek L
    Ann Otol Rhinol Laryngol; 2012 May; 121(5):307-16. PubMed ID: 22724276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps.
    Takabayashi T; Kato A; Peters AT; Suh LA; Carter R; Norton J; Grammer LC; Tan BK; Chandra RK; Conley DB; Kern RC; Fujieda S; Schleimer RP
    J Allergy Clin Immunol; 2012 Aug; 130(2):410-20.e5. PubMed ID: 22534535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending the chinchilla middle ear epithelial model for mucin gene investigation.
    Kerschner JE; Khampang P; Samuels T
    Int J Pediatr Otorhinolaryngol; 2010 Sep; 74(9):980-5. PubMed ID: 20591507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of susceptible gene expression profiles in nasal polyposis.
    Wang de Y
    Clin Exp Otorhinolaryngol; 2008 Dec; 1(4):177-83. PubMed ID: 19434264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium.
    Sridhar S; Schembri F; Zeskind J; Shah V; Gustafson AM; Steiling K; Liu G; Dumas YM; Zhang X; Brody JS; Lenburg ME; Spira A
    BMC Genomics; 2008 May; 9():259. PubMed ID: 18513428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucin gene expression in nasal polyps.
    Ali MS; Wilson JA; Bennett M; Pearson JP
    Acta Otolaryngol; 2005 Jun; 125(6):618-24. PubMed ID: 16076710
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.