These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16076782)

  • 1. Influence of newly imposed salinity and waterlogging on Eucalyptus gracilis in South Australia.
    Barrett MS; Preiss KA; Sinclair R
    Tree Physiol; 2005 Oct; 25(10):1339-46. PubMed ID: 16076782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential.
    Zubrinich TM; Loveys B; Gallasch S; Seekamp JV; Tyerman SD
    Tree Physiol; 2000 Aug; 20(14):953-63. PubMed ID: 11303570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
    Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT
    Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.
    Arndt SK; Sanders GJ; Bristow M; Hutley LB; Beringer J; Livesley SJ
    Tree Physiol; 2015 Jul; 35(7):783-91. PubMed ID: 25934988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.
    Taylor PJ; Nuberg IK; Hatton TJ
    Tree Physiol; 2001 Apr; 21(6):403-8. PubMed ID: 11282580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.
    Costelloe JF; Payne E; Woodrow IE; Irvine EC; Western AW; Leaney FW
    Oecologia; 2008 May; 156(1):43-52. PubMed ID: 18270743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.
    Poss JA; Grattan SR; Suarez DL; Grieve CM
    Tree Physiol; 2000 Oct; 20(16):1121-7. PubMed ID: 11269964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance.
    Costa E Silva F; Shvaleva A; Maroco JP; Almeida MH; Chaves MM; Pereira JS
    Tree Physiol; 2004 Oct; 24(10):1165-72. PubMed ID: 15294763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought.
    McJannet D; Vertessy R
    Tree Physiol; 2001 Aug; 21(12-13):1001-8. PubMed ID: 11498347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.
    Pita P; Pardos JA
    Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
    Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD
    Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.
    Schulze ED; Turner NC; Nicolle D; Schumacher J
    Tree Physiol; 2006 Apr; 26(4):479-92. PubMed ID: 16414927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation-rehydration cycles despite unlimited water supply.
    Pfautsch S; Keitel C; Turnbull TL; Braimbridge MJ; Wright TE; Simpson RR; O'Brien JA; Adams MA
    Tree Physiol; 2011 Oct; 31(10):1041-51. PubMed ID: 21908853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.
    Zolfaghar S; Villalobos-Vega R; Zeppel M; Cleverly J; Rumman R; Hingee M; Boulain N; Li Z; Eamus D
    Tree Physiol; 2017 Jul; 37(7):961-975. PubMed ID: 28369559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater.
    Mensforth LJ; Thorburn PJ; Tyerman SD; Walker GR
    Oecologia; 1994 Nov; 100(1-2):21-28. PubMed ID: 28307023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.
    Medhurst JL; Battaglia M; Beadle CL
    Tree Physiol; 2002 Aug; 22(11):775-84. PubMed ID: 12184981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.