BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 16077109)

  • 1. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
    Lowder BJ; Duyvesteyn MD; Blair DF
    J Bacteriol; 2005 Aug; 187(16):5640-7. PubMed ID: 16077109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli.
    Braun TF; Al-Mawsawi LQ; Kojima S; Blair DF
    Biochemistry; 2004 Jan; 43(1):35-45. PubMed ID: 14705929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex.
    Brown PN; Terrazas M; Paul K; Blair DF
    J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of FliN subunits in the flagellar motor of Escherichia coli.
    Paul K; Blair DF
    J Bacteriol; 2006 Apr; 188(7):2502-11. PubMed ID: 16547037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG.
    Brown PN; Hill CP; Blair DF
    EMBO J; 2002 Jul; 21(13):3225-34. PubMed ID: 12093724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli.
    Paul K; Brunstetter D; Titen S; Blair DF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of the flagellar rotor.
    Paul K; Gonzalez-Bonet G; Bilwes AM; Crane BR; Blair D
    EMBO J; 2011 Jun; 30(14):2962-71. PubMed ID: 21673656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
    Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR
    Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli.
    Sarkar MK; Paul K; Blair DF
    J Biol Chem; 2010 Jan; 285(1):675-84. PubMed ID: 19858188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.
    Pandini A; Kleinjung J; Rasool S; Khan S
    PLoS One; 2015; 10(11):e0142407. PubMed ID: 26561852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor.
    Yorimitsu T; Mimaki A; Yakushi T; Homma M
    J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change.
    Kim EA; Price-Carter M; Carlquist WC; Blair DF
    Biochemistry; 2008 Oct; 47(43):11332-9. PubMed ID: 18834143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli.
    Lloyd SA; Blair DF
    J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly states of FliM and FliG within the flagellar switch complex.
    Sircar R; Borbat PP; Lynch MJ; Bhatnagar J; Beyersdorf MS; Halkides CJ; Freed JH; Crane BR
    J Mol Biol; 2015 Feb; 427(4):867-886. PubMed ID: 25536293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of the bi-directional bacterial flagellarĀ motor.
    Morimoto YV; Minamino T
    Biomolecules; 2014 Feb; 4(1):217-34. PubMed ID: 24970213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis.
    Morehouse KA; Goodfellow IG; Sockett RE
    J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.
    Fang X; Gomelsky M
    Mol Microbiol; 2010 Jun; 76(5):1295-305. PubMed ID: 20444091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex.
    Braun TF; Blair DF
    Biochemistry; 2001 Oct; 40(43):13051-9. PubMed ID: 11669643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.