BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16077260)

  • 1. Role of protein kinase C in Ca channel blocker-induced renal arteriolar dilation in spontaneously hypertensive rats--studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Wakino S; Ozawa Y; Homma K; Kanda T; Okubo K; Takamatsu I; Tatematsu S; Kumagai H; Saruta T
    Keio J Med; 2005 Jun; 54(2):102-8. PubMed ID: 16077260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Saruta T
    Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular mechanism for mibefradil-induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Ozawa Y; Wakino S; Kanda T; Homma K; Takamatsu I; Tatematsu S; Saruta T
    J Cardiovasc Pharmacol; 2003 Dec; 42(6):697-702. PubMed ID: 14639089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired nitric oxide-independent dilation of renal afferent arterioles in spontaneously hypertensive rats.
    Hayashi K; Matsuda H; Nagahama T; Fujiwara K; Ozawa Y; Kubota E; Honda M; Tokuyama H; Saruta T
    Hypertens Res; 1999 Mar; 22(1):31-7. PubMed ID: 10221348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal afferent and efferent arteriolar dilation by nilvadipine: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Wakino S; Saruta T
    J Cardiovasc Pharmacol; 1999 Feb; 33(2):243-7. PubMed ID: 10028932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist, and an endothelin receptor antagonist on renal afferent arteriolar structure.
    Skov K; Fenger-Grøn J; Mulvany MJ
    Hypertension; 1996 Sep; 28(3):464-71. PubMed ID: 8794834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Epstein M; Loutzenhiser R
    Circ Res; 1989 Dec; 65(6):1475-84. PubMed ID: 2582584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the renal action of pranidipine in the rat.
    Nagahama T; Hayashi K; Fujiwara K; Ozawa Y; Saruta T
    Arzneimittelforschung; 2000 Mar; 50(3):248-53. PubMed ID: 10758776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
    Takenaka T; Suzuki H; Okada H; Inoue T; Kanno Y; Ozawa Y; Hayashi K; Saruta T
    Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of protein kinase C in angiotensin II-induced constriction of renal microvessels.
    Nagahama T; Hayashi K; Ozawa Y; Takenaka T; Saruta T
    Kidney Int; 2000 Jan; 57(1):215-23. PubMed ID: 10620202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate effects of calcium antagonists on renal microcirculation.
    Hayashi K; Nagahama T; Oka K; Epstein M; Saruta T
    Hypertens Res; 1996 Mar; 19(1):31-6. PubMed ID: 8829821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Pulse" treatment with high-dose angiotensin blocker reverses renal arteriolar hypertrophy and regresses hypertension.
    Ishiguro K; Hayashi K; Sasamura H; Sakamaki Y; Itoh H
    Hypertension; 2009 Jan; 53(1):83-9. PubMed ID: 19047581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Governance of arteriolar oscillation by ryanodine receptors.
    Takenaka T; Ohno Y; Hayashi K; Saruta T; Suzuki H
    Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R125-31. PubMed ID: 12793994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide modulates but does not impair myogenic vasoconstriction of the afferent arteriole in spontaneously hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Suzuki H; Saruta T
    Hypertension; 1995 Jun; 25(6):1212-9. PubMed ID: 7768564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasodilatory effect of cilnidipine, an L-type and N-type calcium channel blocker, on rat kidney glomerular arterioles.
    Konno Y; Kimura K
    Int Heart J; 2008 Nov; 49(6):723-32. PubMed ID: 19075488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norepinephrine-induced calcium signaling pathways in afferent arterioles of genetically hypertensive rats.
    Salomonsson M; Arendshorst WJ
    Am J Physiol Renal Physiol; 2001 Aug; 281(2):F264-72. PubMed ID: 11457717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo.
    Honda M; Hayashi K; Matsuda H; Kubota E; Tokuyama H; Okubo K; Takamatsu I; Ozawa Y; Saruta T
    J Hypertens; 2001 Nov; 19(11):2031-7. PubMed ID: 11677369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.