These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16077260)

  • 41. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW; Imig JD; Cook AK
    Hypertension; 1997 Jan; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of chloroethylclonidine-induced contraction in isolated arteries of Wistar Kyoto rats: alpha1D- and alpha1A-adrenoceptors, protein kinase C, and calcium influx.
    Ibarra M; López-Guerrero JJ; Villalobos-Molina R
    Arch Med Res; 2001; 32(4):258-62. PubMed ID: 11440779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atypical Ca2+ currents in chromaffin cells from SHR and WKY rat strains result from the deficient expression of a splice variant of the α1D Ca2+ channel.
    Segura-Chama P; Rivera-Cerecedo CV; González-Ramírez R; Felix R; Hernández-Guijo JM; Hernández-Cruz A
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(2):H467-78. PubMed ID: 22081701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of angiotensin II, endothelin-1, and protein kinase C inhibitor on DNA synthesis and intracellular calcium mobilization in vascular smooth muscle cells from young normotensive and spontaneously hypertensive rats.
    Rosen B; Barg J; Zimlichman R
    Am J Hypertens; 1999 Dec; 12(12 Pt 1-2):1243-51. PubMed ID: 10619588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of insulin on rat renal microvessels: studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Fujiwara K; Oka K; Nagahama T; Matsuda H; Saruta T
    Kidney Int; 1997 May; 51(5):1507-13. PubMed ID: 9150466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles.
    Poulsen CB; Al-Mashhadi RH; Cribbs LL; Skøtt O; Hansen PB
    Kidney Int; 2011 Feb; 79(4):443-51. PubMed ID: 21068717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nifedipine induces apoptosis in cultured vascular smooth muscle cells from spontaneously hypertensive rats.
    Stead S; Werstiuk ES; Lee RM
    Life Sci; 2000 Jul; 67(8):895-906. PubMed ID: 10946849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variations in arterioles in spontaneously hypertensive rats. Morphometric analysis of afferent and efferent arterioles.
    Kimura K; Nanba S; Tojo A; Hirata Y; Matsuoka H; Sugimoto T
    Virchows Arch A Pathol Anat Histopathol; 1989; 415(6):565-9. PubMed ID: 2508313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium buffering of resting, voltage-dependent Ca2+ influx by sarcoplasmic reticulum in femoral arteries from spontaneously hypertensive rats at prehypertensive stage.
    Asano M; Nomura Y
    Hypertens Res; 2001 May; 24(3):271-82. PubMed ID: 11409650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats.
    Vyas SJ; Blaschak CM; Chinoy MR; Jackson EK
    Mol Cell Biochem; 2000 Sep; 212(1-2):121-9. PubMed ID: 11108143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of calcium antagonists on glomerular arterioles in spontaneously hypertensive rats.
    Sabbatini M; Leonardi A; Testa R; Vitaioli L; Amenta F
    Hypertension; 2000 Mar; 35(3):775-9. PubMed ID: 10720594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles.
    Salomonsson M; Arendshorst WJ
    Am J Physiol Renal Physiol; 2004 May; 286(5):F866-74. PubMed ID: 15075182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels.
    Hansen PB; Jensen BL; Andreasen D; Skøtt O
    Circ Res; 2001 Sep; 89(7):630-8. PubMed ID: 11577029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased activity of calcium channels and Rho-associated kinase in the basilar artery during chronic hypertension in vivo.
    Kitazono T; Ago T; Kamouchi M; Santa N; Ooboshi H; Fujishima M; Ibayashi S
    J Hypertens; 2002 May; 20(5):879-84. PubMed ID: 12011648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired prostaglandin E(2)/prostaglandin I(2) receptor-G(s) protein interactions in isolated renal resistance arterioles of spontaneously hypertensive rats.
    Ruan X; Chatziantoniou C; Arendshorst WJ
    Hypertension; 1999 Nov; 34(5):1134-40. PubMed ID: 10567195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of actions of calcium antagonists on efferent arterioles--with special references to glomerular hypertension.
    Hayashi K; Ozawa Y; Fujiwara K; Wakino S; Kumagai H; Saruta T
    Am J Nephrol; 2003; 23(4):229-44. PubMed ID: 12840599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.
    Oguchi H; Sasamura H; Shinoda K; Morita S; Kono H; Nakagawa K; Ishiguro K; Hayashi K; Nakamura M; Azegami T; Oya M; Itoh H
    Hypertension; 2014 Oct; 64(4):784-91. PubMed ID: 24980670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo visualization of characteristics of renal microcirculation in hypertensive and diabetic rats.
    Yamamoto T; Tomura Y; Tanaka H; Kajiya F
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F571-7. PubMed ID: 11502605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.