These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
622 related articles for article (PubMed ID: 16078185)
1. A proteomic analysis of cold stress responses in rice seedlings. Cui S; Huang F; Wang J; Ma X; Cheng Y; Liu J Proteomics; 2005 Aug; 5(12):3162-72. PubMed ID: 16078185 [TBL] [Abstract][Full Text] [Related]
2. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
3. An approach to identify cold-induced low-abundant proteins in rice leaf. Lee DG; Ahsan N; Lee SH; Kang KY; Lee JJ; Lee BH C R Biol; 2007 Mar; 330(3):215-25. PubMed ID: 17434115 [TBL] [Abstract][Full Text] [Related]
4. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of rice seedlings during cold stress. Hashimoto M; Komatsu S Proteomics; 2007 Apr; 7(8):1293-302. PubMed ID: 17380535 [TBL] [Abstract][Full Text] [Related]
6. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Ahsan N; Lee DG; Kim KH; Alam I; Lee SH; Lee KW; Lee H; Lee BH Chemosphere; 2010 Jan; 78(3):224-31. PubMed ID: 19948354 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
9. Differential expression of proteins in rice leaves cultivated with different forms of nitrogen nutrients. Wang YQ; Zhang JJ; Zhu GH; Peng XX Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Aug; 32(4):403-10. PubMed ID: 16957390 [TBL] [Abstract][Full Text] [Related]
10. Proteome analysis of rice uppermost internodes at the milky stage. Yang P; Liang Y; Shen S; Kuang T Proteomics; 2006 Jun; 6(11):3330-8. PubMed ID: 16637012 [TBL] [Abstract][Full Text] [Related]
11. Proteomic responses of rice young panicles to salinity. Dooki AD; Mayer-Posner FJ; Askari H; Zaiee AA; Salekdeh GH Proteomics; 2006 Dec; 6(24):6498-507. PubMed ID: 17163441 [TBL] [Abstract][Full Text] [Related]
12. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. Kim ST; Wang Y; Kang SY; Kim SG; Rakwal R; Kim YC; Kang KY J Proteome Res; 2009 Jul; 8(7):3598-605. PubMed ID: 19472976 [TBL] [Abstract][Full Text] [Related]
13. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Yang Y; Thannhauser TW; Li L; Zhang S Electrophoresis; 2007 Jun; 28(12):2080-94. PubMed ID: 17486657 [TBL] [Abstract][Full Text] [Related]
14. Proteomic response of rice seedling leaves to elevated CO2 levels. Bokhari SA; Wan XY; Yang YW; Zhou L; Tang WL; Liu JY J Proteome Res; 2007 Dec; 6(12):4624-33. PubMed ID: 17988085 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. Khan M; Takasaki H; Komatsu S J Proteome Res; 2005; 4(5):1592-9. PubMed ID: 16212411 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Yang P; Chen H; Liang Y; Shen S Proteomics; 2007 Jul; 7(14):2459-68. PubMed ID: 17570521 [TBL] [Abstract][Full Text] [Related]
17. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Cho K; Shibato J; Agrawal GK; Jung YH; Kubo A; Jwa NS; Tamogami S; Satoh K; Kikuchi S; Higashi T; Kimura S; Saji H; Tanaka Y; Iwahashi H; Masuo Y; Rakwal R J Proteome Res; 2008 Jul; 7(7):2980-98. PubMed ID: 18517257 [TBL] [Abstract][Full Text] [Related]
18. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Ahsan N; Donnart T; Nouri MZ; Komatsu S J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562 [TBL] [Abstract][Full Text] [Related]
19. Quantitative proteomic analysis of cold-responsive proteins in rice. Neilson KA; Mariani M; Haynes PA Proteomics; 2011 May; 11(9):1696-706. PubMed ID: 21433000 [TBL] [Abstract][Full Text] [Related]
20. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. Komatsu S; Zang X; Tanaka N J Proteome Res; 2006 Feb; 5(2):270-6. PubMed ID: 16457592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]