These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 16078388)

  • 41. Randomized clinical trials with a pre- and a post-treatment measurement: repeated measures versus ANCOVA models.
    Winkens B; van Breukelen GJ; Schouten HJ; Berger MP
    Contemp Clin Trials; 2007 Nov; 28(6):713-9. PubMed ID: 17524958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of variance-function misspecification in analysis of longitudinal data.
    Wang YG; Lin X
    Biometrics; 2005 Jun; 61(2):413-21. PubMed ID: 16011687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple-outcome meta-analysis of clinical trials.
    Berkey CS; Anderson JJ; Hoaglin DC
    Stat Med; 1996 Mar; 15(5):537-57. PubMed ID: 8668877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A likelihood approach to meta-analysis with random effects.
    Hardy RJ; Thompson SG
    Stat Med; 1996 Mar; 15(6):619-29. PubMed ID: 8731004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the estimation of change from baseline in a continuous outcome measure in the clinical trial setting.
    Mayer-Hamblett N; Kronmal RA
    Contemp Clin Trials; 2005 Feb; 26(1):2-16. PubMed ID: 15837448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Clinical trials methodology: randomization, intent-to-treat, and random-effects regression.
    Atkins DC
    Depress Anxiety; 2009; 26(8):697-700. PubMed ID: 19658122
    [No Abstract]   [Full Text] [Related]  

  • 47. Imputing variance estimates do not alter the conclusions of a meta-analysis with continuous outcomes: a case study of changes in renal function after living kidney donation.
    Thiessen Philbrook H; Barrowman N; Garg AX
    J Clin Epidemiol; 2007 Mar; 60(3):228-40. PubMed ID: 17292016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Meta-analysis of effect sizes reported at multiple time points: a multivariate approach.
    Trikalinos TA; Olkin I
    Clin Trials; 2012 Oct; 9(5):610-20. PubMed ID: 22872546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Test homogeneity of odds ratio in a randomized clinical trial with noncompliance.
    Lui KJ; Chang KC
    J Biopharm Stat; 2009 Sep; 19(5):916-32. PubMed ID: 20183452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells.
    Rücker G; Schwarzer G; Carpenter J; Olkin I
    Stat Med; 2009 Feb; 28(5):721-38. PubMed ID: 19072749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
    Waernbaum I
    Stat Med; 2012 Jul; 31(15):1572-81. PubMed ID: 22359267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robustness and power of analysis of covariance applied to ordinal scaled data as arising in randomized controlled trials.
    Sullivan LM; D'Agostino RB
    Stat Med; 2003 Apr; 22(8):1317-34. PubMed ID: 12687657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating trial and treatment heterogeneity in an individual patient data meta-analysis of survival data by means of the penalized maximum likelihood approach.
    Rondeau V; Michiels S; Liquet B; Pignon JP
    Stat Med; 2008 May; 27(11):1894-910. PubMed ID: 18069745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A method to estimate the variance of an endpoint from an on-going blinded trial.
    Xing B; Ganju J
    Stat Med; 2005 Jun; 24(12):1807-14. PubMed ID: 15803440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detecting and adjusting for small-study effects in meta-analysis.
    Rücker G; Carpenter JR; Schwarzer G
    Biom J; 2011 Mar; 53(2):351-68. PubMed ID: 21374698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analyzing bivariate repeated measures for discrete and continuous outcome variables.
    Rochon J
    Biometrics; 1996 Jun; 52(2):740-50. PubMed ID: 8672710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
    Bakbergenuly I; Hoaglin DC; Kulinskaya E
    Res Synth Methods; 2020 May; 11(3):426-442. PubMed ID: 32112619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transforming the Model T: random effects meta-analysis with stable weights.
    Malloy MJ; Prendergast LA; Staudte RG
    Stat Med; 2013 May; 32(11):1842-64. PubMed ID: 23097338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A random-effects regression model for meta-analysis.
    Berkey CS; Hoaglin DC; Mosteller F; Colditz GA
    Stat Med; 1995 Feb; 14(4):395-411. PubMed ID: 7746979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An improved method for bivariate meta-analysis when within-study correlations are unknown.
    Hong C; D Riley R; Chen Y
    Res Synth Methods; 2018 Mar; 9(1):73-88. PubMed ID: 29055096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.