These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16078621)

  • 1. Multiview robotic microscope reveals the in-plane kinematics of amphibian neurulation.
    Veldhuis JH; Brodland GW; Wiebe CJ; Bootsma GJ
    Ann Biomed Eng; 2005 Jun; 33(6):821-8. PubMed ID: 16078621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquisition and reconstruction of 4D surfaces of axolotl embryos with the flipping stage robotic microscope.
    Crawford-Young SJ; Dittapongpitch S; Gordon R; Harrington KIS
    Biosystems; 2018 Nov; 173():214-220. PubMed ID: 30554603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of in vivo stress resultants in neurulation-stage amphibian embryos.
    Benko R; Brodland GW
    Ann Biomed Eng; 2007 Apr; 35(4):672-81. PubMed ID: 17237990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorotation of axolotl embryos.
    Abou-Ali G; Kaler KV; Paul R; Björklund NK; Gordon R
    Bioelectromagnetics; 2002 Apr; 23(3):214-23. PubMed ID: 11891751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated.
    Chen X; Brodland GW
    Phys Biol; 2008 Apr; 5(1):015003. PubMed ID: 18408255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated 3-D reconstruction of the surface of live early-stage amphibian embryos.
    Bootsma GJ; Brodland GW
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1407-14. PubMed ID: 16119236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of mitoses in embryonic epithelia using motion field analysis.
    Siva P; Wayne Brodland G; Clausi D
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):151-63. PubMed ID: 19051076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ball microscope for viewing the entire surface of amphibian embryos.
    Crawford-Young SJ; Young Williment JL
    Biosystems; 2021 Oct; 208():104498. PubMed ID: 34339809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface contraction and expansion waves correlated with differentiation in axolotl embryos--I. Prolegomenon and differentiation during invagination through the blastopore, as shown by the fate map.
    Björklund NK; Gordon R
    Comput Chem; 1994 Sep; 18(3):333-45. PubMed ID: 16649266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting mitoses in time-lapse images of embryonic epithelia using intensity analysis.
    Siva P; Brodland GW; Clausi D
    Ann Biomed Eng; 2009 Dec; 37(12):2646-55. PubMed ID: 19757061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional reconstruction of live embryos using robotic macroscope images.
    Brodland GW; Veldhuis JH
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1173-81. PubMed ID: 9735567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos.
    Gillespie JI
    J Physiol; 1983 Nov; 344():359-77. PubMed ID: 6655587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile properties of embryonic epithelia measured using a novel instrument.
    Wiebe C; Brodland GW
    J Biomech; 2005 Oct; 38(10):2087-94. PubMed ID: 16084209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Furrowing surface contraction wave coincident with primary neural induction in amphibian embryos.
    Brodland GW; Gordon R; Scott MJ; Björklund NK; Luchka KB; Martin CC; Matuga C; Globus M; Vethamany-Globus S; Shu D
    J Morphol; 1994 Feb; 219(2):131-42. PubMed ID: 8158657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid method for observing the internal morphology of amphibian embryos.
    Smith SC; Armstrong JB; Hoppe DC
    Scanning Microsc; 1988 Dec; 2(4):2087-90. PubMed ID: 3238382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organophosphorus pesticides effect on early stages of the axolotl Ambystoma mexicanum (Amphibia: Caudata).
    Robles-Mendoza C; García-Basilio C; Cram-Heydrich S; Hernández-Quiroz M; Vanegas-Pérez C
    Chemosphere; 2009 Feb; 74(5):703-10. PubMed ID: 19012946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.