These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1607877)

  • 1. The influence of muscle contractile activity versus neural factors on morphologic properties of innervated cultured human muscle.
    Park-Matsumoto YC; Askanas V; Engel WK
    J Neurocytol; 1992 May; 21(5):329-40. PubMed ID: 1607877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural--cytochemical studies.
    Askanas V; Kwan H; Alvarez RB; Engel WK; Kobayashi T; Martinuzzi A; Hawkins EF
    J Neurocytol; 1987 Aug; 16(4):523-37. PubMed ID: 3681352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid increases acetylcholinesterase and organization of the postsynaptic membrane in innervated cultured human muscle.
    Askanas V; McFerrin J; Park-Matsumoto YC; Lee CS; Engel WK
    Exp Neurol; 1992 Mar; 115(3):368-75. PubMed ID: 1537395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paralysis of innervated cultured human muscle fibers affects enzymes differentially.
    Martinuzzi A; Askanas V; Engel WK
    J Neurochem; 1990 Jan; 54(1):223-9. PubMed ID: 2152794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation.
    Kobayashi T; Askanas V; Engel WK
    J Neurosci; 1987 Oct; 7(10):3131-41. PubMed ID: 3668620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental study of the expression of dystrophin in cultured human muscle aneurally and innervated with fetal rat spinal cord.
    Park-Matsumoto YC; Kameda N; Kobayashi T; Tsukagoshi H
    Brain Res; 1991 Nov; 565(2):280-9. PubMed ID: 1668813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.
    Anglister L; McMahan UJ
    J Cell Biol; 1985 Sep; 101(3):735-43. PubMed ID: 3875617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative investigation of the neuromuscular junction of rat skeletal muscle fibres after double innervation.
    Huang SK; Zhu PH; Qu FJ; Chen KY
    Cell Tissue Res; 1989 Jan; 255(1):209-13. PubMed ID: 2736605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological properties, cholinesterase activity and anatomy of nerve-muscle junctions in vagus-innervated frog sartorius.
    Landmesser L
    J Physiol; 1972 Jan; 220(1):243-56. PubMed ID: 4333829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denervation changes in normal and myasthenia gravis human muscle fibres during organ culture.
    Cull-Candy SG; Miledi R; Uchitel OD
    J Physiol; 1982 Dec; 333():227-49. PubMed ID: 7182466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of acetylcholinesterase by contractile activity of cultured muscle cells.
    Walker CR; Wilson BW
    Nature; 1975 Jul; 256(5514):215-6. PubMed ID: 1171375
    [No Abstract]   [Full Text] [Related]  

  • 12. The fate of foreign endplates in cross-innervated rat soleus muscle.
    Kuffler DP; Thompson W; Jansen JK
    Proc R Soc Lond B Biol Sci; 1980 Jun; 208(1171):189-222. PubMed ID: 6105655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental regulation of myotonic dystrophy protein kinase in human muscle cells in vitro.
    Kameda N; Ueda H; Ohno S; Shimokawa M; Usuki F; Ishiura S; Kobayashi T
    Neuroscience; 1998 Jul; 85(1):311-22. PubMed ID: 9607721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyrotropin-releasing hormone enhances motor neuron-evoked contractions of cultured human muscle.
    Askanas V; Engel WK; Kobayashi T
    Ann Neurol; 1985 Dec; 18(6):716-9. PubMed ID: 3936404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic or postsynaptic origin of acetylcholinesterase at neuromuscular junctions? An immunological study in heterologous nerve-muscle cultures.
    De La Porte S; Vallette FM; Grassi J; Vigny M; Koenig J
    Dev Biol; 1986 Jul; 116(1):69-77. PubMed ID: 3525279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptors and acetylcholinesterase accumulate at the nerve-muscle contacts of de novo grown human monolayer muscle cocultured with fetal rat spinal cord.
    Kobayashi T; Askanas V
    Exp Neurol; 1985 May; 88(2):327-35. PubMed ID: 3987861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy.
    Voigt T; Neve A; Schümperli D
    Neuropathol Appl Neurobiol; 2014 Jun; 40(4):416-34. PubMed ID: 23718187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane properties underlying spontaneous activity of denervated muscle fibres.
    Purves D; Sakmann B
    J Physiol; 1974 May; 239(1):125-53. PubMed ID: 4853156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous labelling of basal lamina components and acetylcholinesterase at the neuromuscular junction.
    Stephens H; Bendayan M; Gisiger V
    Histochem J; 1985 Nov; 17(11):1203-20. PubMed ID: 2417993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphology of regeneration of skeletal muscles in the rat.
    Schmalbruch H
    Tissue Cell; 1976; 8(4):673-92. PubMed ID: 1020021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.