These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 160791)
1. The kinetics of effector binding to phosphofructokinase. The allosteric conformational transition induced by 1,N6-ethenoadenosine triphosphate. Roberts D; Kellett GL Biochem J; 1979 Nov; 183(2):349-60. PubMed ID: 160791 [TBL] [Abstract][Full Text] [Related]
2. The kinetics of effector binding to phosphofructokinase. The influence of effectors on the allosteric conformational transition. Roberts D; Kellett GL Biochem J; 1980 Sep; 189(3):569-79. PubMed ID: 6260084 [TBL] [Abstract][Full Text] [Related]
3. The kinetics of effector binding to phosphofructokinase. The binding of Mg2+-1,N6-ethenoadenosine triphosphate to the catalytic site. Roberts D; Kellett GL Biochem J; 1980 Sep; 189(3):561-7. PubMed ID: 6260083 [TBL] [Abstract][Full Text] [Related]
4. Binding of ATP and of 1,N6-ethenoadensone triphosphate to rabbit muscle phosphofructokinase. Liou RS; Anderson SR Biochemistry; 1978 Mar; 17(6):999-1004. PubMed ID: 147103 [TBL] [Abstract][Full Text] [Related]
5. Kinetic mechanism of 1-N6-etheno-2-aza-ATP and 1-N6-etheno-2-aza-ADP binding to bovine ventricular actomyosin-S1 and myofibrils. Smith SJ; White HD J Biol Chem; 1985 Dec; 260(28):15156-62. PubMed ID: 4066666 [TBL] [Abstract][Full Text] [Related]
6. Active site modification of 4-aminobutyrate aminotransferase with ATP analogs. Kim DS; Churchich JE Biochim Biophys Acta; 1987 Dec; 916(3):265-70. PubMed ID: 3120774 [TBL] [Abstract][Full Text] [Related]
7. A conformational transition involved in antagonistic substrate binding to the allosteric phosphofructokinase from Escherichia coli. Deville-Bonne D; Garel JR Biochemistry; 1992 Feb; 31(6):1695-700. PubMed ID: 1531298 [TBL] [Abstract][Full Text] [Related]
8. 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP as probes of the activator site of glycogen phosphorylase from rabbit skeletal muscle. Vandenbunder B; Morange M; Buc H Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2696-700. PubMed ID: 1066682 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and properties of 8-azido-1, N6-etheno adenosine triphosphate--a fluorescent and photosensitive ATP analog. Schäfer HJ; Scheurich P; Rathgeber G; Dose K Nucleic Acids Res; 1978 Apr; 5(4):1345-51. PubMed ID: 26043 [TBL] [Abstract][Full Text] [Related]
10. Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching. Miyata H; Asai H J Biochem; 1981 Jul; 90(1):133-9. PubMed ID: 7026547 [TBL] [Abstract][Full Text] [Related]
11. 1, N6-Etheno-2-aza-adenosine triphosphate: enormous increase in fluorescence intensity induced by its binding to heavy meromyosin and estimation of the kinetic parameters. Miyata H; Asai H Biochem Biophys Res Commun; 1982 Mar; 105(1):296-302. PubMed ID: 7046743 [No Abstract] [Full Text] [Related]
12. Spin-labelled phosphofructokinase. A simple and direct approach to the study of allosteric equilibria under near-physiological conditions. Jones R; Dwek RA; Walker IO Eur J Biochem; 1975 Dec; 60(1):187-98. PubMed ID: 1264 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the allosteric properties of rabbit muscle phosphofructokinase by means of affinity labeling with a reactive ATP analog. Nagata K; Suzuki K; Imahori K J Biochem; 1979 Nov; 86(5):1179-89. PubMed ID: 160416 [TBL] [Abstract][Full Text] [Related]
14. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin. Root DD; Reisler E Protein Sci; 1992 Aug; 1(8):1014-22. PubMed ID: 1304380 [TBL] [Abstract][Full Text] [Related]
15. Slow ligand-induced transitions in the allosteric phosphofructokinase from Escherichia coli. Auzat I; Gawlita E; Garel JR J Mol Biol; 1995 Jun; 249(2):478-92. PubMed ID: 7783204 [TBL] [Abstract][Full Text] [Related]
16. [Affinity modification of rabbit skeletal muscle creatine kinase by a fluorescent analog of ATP: gamma-(azidoanalide)-1, N6-ethenoadenosine triphosphate]. Denisov AIu; Nevinskiĭ GA; Lavrik OI Biokhimiia; 1982 Feb; 47(2):184-90. PubMed ID: 7066423 [TBL] [Abstract][Full Text] [Related]
17. Exchange of 1,N6-etheno-ATP with actin-bound nucleotides as a tool for studying the steady-state exchange of subunits in F-actin solutions. Wang YL; Taylor DL Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5503-7. PubMed ID: 6946487 [TBL] [Abstract][Full Text] [Related]
18. Transient kinetics of the interaction of 1,N6-ethenoadenosine 5'-triphosphate with myosin subfragment 1 under normal and cryoenzymic conditions: a comparison with adenosine 5'-triphosphate. Tesi C; Travers F; Barman T Biochemistry; 1988 Jun; 27(13):4903-8. PubMed ID: 3167019 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent derivatives of nucleotides. Metal ion interactions and pH dependency. Vanderkooi JM; Weiss CJ; Woodrow GV Biophys J; 1979 Feb; 25(2 Pt 1):263-75. PubMed ID: 45395 [TBL] [Abstract][Full Text] [Related]
20. Detection of the conformational change in the catalytic site of adenosine triphosphatase from beef liver mitochondria by affinity labeling with the dialdehyde derivative of ethenoadenosine triphosphate. Wakagi T; Ohta T J Biochem; 1982 Nov; 92(5):1403-12. PubMed ID: 6218159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]