BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16079179)

  • 1. Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics.
    Cytrynbaum EN; Sommi P; Brust-Mascher I; Scholey JM; Mogilner A
    Mol Biol Cell; 2005 Oct; 16(10):4967-81. PubMed ID: 16079179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A force balance model of early spindle pole separation in Drosophila embryos.
    Cytrynbaum EN; Scholey JM; Mogilner A
    Biophys J; 2003 Feb; 84(2 Pt 1):757-69. PubMed ID: 12547760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actomyosin-dependent cortical dynamics contributes to the prophase force-balance in the early Drosophila embryo.
    Sommi P; Cheerambathur D; Brust-Mascher I; Mogilner A
    PLoS One; 2011 Mar; 6(3):e18366. PubMed ID: 21483831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos.
    Sharp DJ; Yu KR; Sisson JC; Sullivan W; Scholey JM
    Nat Cell Biol; 1999 May; 1(1):51-4. PubMed ID: 10559864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule flux and sliding in mitotic spindles of Drosophila embryos.
    Brust-Mascher I; Scholey JM
    Mol Biol Cell; 2002 Nov; 13(11):3967-75. PubMed ID: 12429839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of Pavarotti-KLP in living Drosophila embryos suggests roles in reorganizing the cortical cytoskeleton during the mitotic cycle.
    Minestrini G; Harley AS; Glover DM
    Mol Biol Cell; 2003 Oct; 14(10):4028-38. PubMed ID: 14517316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays.
    Tao L; Mogilner A; Civelekoglu-Scholey G; Wollman R; Evans J; Stahlberg H; Scholey JM
    Curr Biol; 2006 Dec; 16(23):2293-302. PubMed ID: 17141610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins.
    Endow SA; Komma DJ
    J Cell Sci; 1996 Oct; 109 ( Pt 10)():2429-42. PubMed ID: 8923204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos.
    Raff JW; Glover DM
    Cell; 1989 May; 57(4):611-9. PubMed ID: 2497990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization.
    Stevenson VA; Kramer J; Kuhn J; Theurkauf WE
    Nat Cell Biol; 2001 Jan; 3(1):68-75. PubMed ID: 11146628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins.
    Goshima G; Nédélec F; Vale RD
    J Cell Biol; 2005 Oct; 171(2):229-40. PubMed ID: 16247025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation.
    Brust-Mascher I; Civelekoglu-Scholey G; Kwon M; Mogilner A; Scholey JM
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15938-43. PubMed ID: 15522967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coordination of three mitotic motors in Drosophila embryos.
    Sharp DJ; Brown HM; Kwon M; Rogers GC; Holland G; Scholey JM
    Mol Biol Cell; 2000 Jan; 11(1):241-53. PubMed ID: 10637305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microtubule cross-linker Feo controls the midzone stability, motor composition, and elongation of the anaphase B spindle in Drosophila embryos.
    Wang H; Brust-Mascher I; Scholey JM
    Mol Biol Cell; 2015 Apr; 26(8):1452-62. PubMed ID: 25694445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical reorganization and spindle dynamics in Drosophila embryos.
    Sommi P; Ananthakrishnan R; Cheerambathur DK; Kwon M; Morales-Mulia S; Brust-Mascher I; Mogilner A
    J Cell Sci; 2010 Jun; 123(Pt 11):1862-72. PubMed ID: 20442250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos.
    Stevenson V; Hudson A; Cooley L; Theurkauf WE
    Curr Biol; 2002 Apr; 12(9):705-11. PubMed ID: 12007413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of centrosome separation and bipolar spindle assembly.
    Tanenbaum ME; Medema RH
    Dev Cell; 2010 Dec; 19(6):797-806. PubMed ID: 21145497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation.
    Raaijmakers JA; van Heesbeen RG; Meaders JL; Geers EF; Fernandez-Garcia B; Medema RH; Tanenbaum ME
    EMBO J; 2012 Nov; 31(21):4179-90. PubMed ID: 23034402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis.
    Civelekoglu-Scholey G; Sharp DJ; Mogilner A; Scholey JM
    Biophys J; 2006 Jun; 90(11):3966-82. PubMed ID: 16533843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynein-dependent movements of the mitotic spindle in Saccharomyces cerevisiae Do not require filamentous actin.
    Heil-Chapdelaine RA; Tran NK; Cooper JA
    Mol Biol Cell; 2000 Mar; 11(3):863-72. PubMed ID: 10712505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.