BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16079229)

  • 1. Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
    Takahashi Y; Yokoyama S
    Genetics; 2005 Nov; 171(3):1153-60. PubMed ID: 16079229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions.
    Yokoyama S; Altun A; Jia H; Yang H; Koyama T; Faggionato D; Liu Y; Starmer WT
    Sci Adv; 2015 Sep; 1(8):e1500162. PubMed ID: 26601250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei).
    Yokoyama S; Takenaka N; Blow N
    Gene; 2007 Jul; 396(1):196-202. PubMed ID: 17498892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK
    Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch.
    Ramos LS; Chen MH; Knox BE; Birge RR
    Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.
    Carvalho LS; Cowing JA; Wilkie SE; Bowmaker JK; Hunt DM
    Mol Biol Evol; 2007 Aug; 24(8):1843-52. PubMed ID: 17556758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.
    van Hazel I; Sabouhanian A; Day L; Endler JA; Chang BS
    BMC Evol Biol; 2013 Nov; 13():250. PubMed ID: 24499383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments.
    Carvalho LS; Davies WL; Robinson PR; Hunt DM
    Proc Biol Sci; 2012 Jan; 279(1727):387-93. PubMed ID: 21697177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision in the ultraviolet.
    Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S
    Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments.
    Wilkie SE; Robinson PR; Cronin TW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2000 Jul; 39(27):7895-901. PubMed ID: 10891069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision.
    Hart NS; Mountford JK; Davies WI; Collin SP; Hunt DM
    Proc Biol Sci; 2016 Jul; 283(1834):. PubMed ID: 27383819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of a Xenopus short wavelength cone pigment.
    Starace DM; Knox BE
    Exp Eye Res; 1998 Aug; 67(2):209-20. PubMed ID: 9733587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.