BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16079237)

  • 1. Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast.
    Refsland EW; Livingston DM
    Genetics; 2005 Nov; 171(3):923-34. PubMed ID: 16079237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal flap endonuclease (rad27) mutations: lethal interactions with a DNA ligase I mutation (cdc9-p) and suppression by proliferating cell nuclear antigen (POL30) in Saccharomyces cerevisiae.
    Karanja KK; Livingston DM
    Genetics; 2009 Sep; 183(1):63-78. PubMed ID: 19596905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast.
    Ireland MJ; Reinke SS; Livingston DM
    Genetics; 2000 Aug; 155(4):1657-65. PubMed ID: 10924464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation.
    Schweitzer JK; Livingston DM
    Hum Mol Genet; 1998 Jan; 7(1):69-74. PubMed ID: 9384605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
    Callahan JL; Andrews KJ; Zakian VA; Freudenreich CH
    Mol Cell Biol; 2003 Nov; 23(21):7849-60. PubMed ID: 14560028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of DNA replication mutations on CAG tract stability in yeast.
    Schweitzer JK; Livingston DM
    Genetics; 1999 Jul; 152(3):953-63. PubMed ID: 10388815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic instability induced by overexpression of DNA ligase I in budding yeast.
    Subramanian J; Vijayakumar S; Tomkinson AE; Arnheim N
    Genetics; 2005 Oct; 171(2):427-41. PubMed ID: 15965249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
    Liu Y; Zhang H; Veeraraghavan J; Bambara RA; Freudenreich CH
    Mol Cell Biol; 2004 May; 24(9):4049-64. PubMed ID: 15082797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage.
    Jackson SM; Whitworth AJ; Greene JC; Libby RT; Baccam SL; Pallanck LJ; La Spada AR
    Gene; 2005 Feb; 347(1):35-41. PubMed ID: 15715978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage.
    Xie Y; Liu Y; Argueso JL; Henricksen LA; Kao HI; Bambara RA; Alani E
    Mol Cell Biol; 2001 Aug; 21(15):4889-99. PubMed ID: 11438646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression.
    Nguyen HD; Becker J; Thu YM; Costanzo M; Koch EN; Smith S; Myung K; Myers CL; Boone C; Bielinsky AK
    PLoS One; 2013; 8(6):e66379. PubMed ID: 23824283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair.
    López Castel A; Tomkinson AE; Pearson CE
    J Biol Chem; 2009 Sep; 284(39):26631-45. PubMed ID: 19628465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maternal germline-specific effect of DNA ligase I on CTG/CAG instability.
    Tomé S; Panigrahi GB; López Castel A; Foiry L; Melton DW; Gourdon G; Pearson CE
    Hum Mol Genet; 2011 Jun; 20(11):2131-43. PubMed ID: 21378394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion.
    Liu Y; Bambara RA
    J Biol Chem; 2003 Apr; 278(16):13728-39. PubMed ID: 12554738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism.
    Richard GF; Cyncynatus C; Dujon B
    J Mol Biol; 2003 Feb; 326(3):769-82. PubMed ID: 12581639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in
    Koch MR; House NCM; Cosetta CM; Jong RM; Salomon CG; Joyce CE; Philips EA; Su XA; Freudenreich CH
    Genetics; 2018 Mar; 208(3):963-976. PubMed ID: 29305386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.