These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16079237)

  • 81. Preparation and crystallization of human flap endonuclease FEN-1 in complex with proliferating-cell nuclear antigen, PCNA.
    Sakurai S; Kitano K; Okada K; Hamada K; Morioka H; Hakoshima T
    Acta Crystallogr D Biol Crystallogr; 2003 May; 59(Pt 5):933-5. PubMed ID: 12777816
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae.
    Maurer DJ; O'Callaghan BL; Livingston DM
    Mol Cell Biol; 1996 Dec; 16(12):6617-22. PubMed ID: 8943315
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The 26S proteasome drives trinucleotide repeat expansions.
    Concannon C; Lahue RS
    Nucleic Acids Res; 2013 Jul; 41(12):6098-108. PubMed ID: 23620289
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Not just for coding: a new role for histone tails in replication enzyme activation.
    Bielinsky AK; Leung W
    FEBS J; 2016 Dec; 283(23):4244-4246. PubMed ID: 27921370
    [TBL] [Abstract][Full Text] [Related]  

  • 85. FAN1 removes triplet repeat extrusions via a PCNA- and RFC-dependent mechanism.
    Phadte AS; Bhatia M; Ebert H; Abdullah H; Elrazaq EA; Komolov KE; Pluciennik A
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2302103120. PubMed ID: 37549289
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A high mobility group protein binds to long CAG repeat tracts and establishes their chromatin organization in Saccharomyces cerevisiae.
    Kim H; Livingston DM
    J Biol Chem; 2006 Jun; 281(23):15735-40. PubMed ID: 16603770
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mechanisms of trinucleotide repeat instability during human development.
    McMurray CT
    Nat Rev Genet; 2010 Nov; 11(11):786-99. PubMed ID: 20953213
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase.
    Johnston LH; Nasmyth KA
    Nature; 1978 Aug; 274(5674):891-3. PubMed ID: 355897
    [No Abstract]   [Full Text] [Related]  

  • 89. Proliferating cell nuclear antigen restores the enzymatic activity of a DNA ligase I deficient in DNA binding.
    Trasviña-Arenas CH; Cardona-Felix CS; Azuara-Liceaga E; Díaz-Quezada C; Brieba LG
    FEBS Open Bio; 2017 May; 7(5):659-674. PubMed ID: 28469979
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A crystallization and preliminary X-ray diffraction study of the Arabidopsis thaliana proliferating cell nuclear antigen (PCNA2) alone and in a complex with a PIP-box peptide from Flap endonuclease 1.
    Kowalska E; Strzałka W; Oyama T
    Acta Biochim Pol; 2020 Mar; 67(1):49-52. PubMed ID: 32188236
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Instability of CAG-trinucleotide repeats in chronic lymphocytic leukemia.
    Benzow KA; Koob MD; Condie A; Catovsky D; Matutes E; Yuille MR; Houlston RS
    Leuk Lymphoma; 2002 Oct; 43(10):1987-90. PubMed ID: 12481897
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants.
    Larsen E; Kleppa L; Meza TJ; Meza-Zepeda LA; Rada C; Castellanos CG; Lien GF; Nesse GJ; Neuberger MS; Laerdahl JK; William Doughty R; Klungland A
    Cancer Res; 2008 Jun; 68(12):4571-9. PubMed ID: 18559501
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Temperature sensitivity of the cdc9-1 allele of Saccharomyces cerevisiae DNA ligase is dependent on specific combinations of amino acids in the primary structure of the expressed protein.
    Unternährer S; Hinnen A
    Mol Gen Genet; 1992 Mar; 232(2):332-4. PubMed ID: 1557039
    [TBL] [Abstract][Full Text] [Related]  

  • 94. cdc9 ligase-defective mutants of Saccharomyces cerevisiae exhibit lowered resistance to lethal effects of bleomycin.
    Moore CW
    J Bacteriol; 1982 Sep; 151(3):1617-20. PubMed ID: 6179928
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The yeast DNA ligase gene CDC9 is controlled by six orientation specific upstream activating sequences that respond to cellular proliferation but which alone cannot mediate cell cycle regulation.
    White JH; Johnson AL; Lowndes NF; Johnston LH
    Nucleic Acids Res; 1991 Jan; 19(2):359-64. PubMed ID: 1901644
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats.
    Spiro C; Pelletier R; Rolfsmeier ML; Dixon MJ; Lahue RS; Gupta G; Park MS; Chen X; Mariappan SV; McMurray CT
    Mol Cell; 1999 Dec; 4(6):1079-85. PubMed ID: 10635332
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effects of temperature, Mg2+ concentration and mismatches on triplet-repeat expansion during DNA replication in vitro.
    Lyons-Darden T; Topal MD
    Nucleic Acids Res; 1999 Jun; 27(11):2235-40. PubMed ID: 10325409
    [TBL] [Abstract][Full Text] [Related]  

  • 98. PCNA and MutLα: partners in crime in triplet repeat expansion?
    Peña-Diaz J; Jiricny J
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16409-10. PubMed ID: 20823236
    [No Abstract]   [Full Text] [Related]  

  • 99. Formamide sensitivity: a novel conditional phenotype in yeast.
    Aguilera A
    Genetics; 1994 Jan; 136(1):87-91. PubMed ID: 8138179
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species.
    Pankowski JA; Puckett SM; Nano FE
    Appl Environ Microbiol; 2016 Jan; 82(6):1924-1932. PubMed ID: 26773080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.