These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16079399)

  • 1. Optimal compensation for changes in task-relevant movement variability.
    Trommershäuser J; Gepshtein S; Maloney LT; Landy MS; Banks MS
    J Neurosci; 2005 Aug; 25(31):7169-78. PubMed ID: 16079399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimality of human movement under natural variations of visual-motor uncertainty.
    Gepshtein S; Seydell A; Trommershäuser J
    J Vis; 2007 Sep; 7(5):13.1-18. PubMed ID: 18217853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of salience and reward information during saccadic decisions under risk.
    Stritzke M; Trommershäuser J; Gegenfurtner KR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):B1-13. PubMed ID: 19884911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limits to human movement planning in tasks with asymmetric gain landscapes.
    Wu SW; Trommershäuser J; Maloney LT; Landy MS
    J Vis; 2006 Jan; 6(1):53-63. PubMed ID: 16489858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. People are better at maximizing expected gain in a manual aiming task with rapidly changing probabilities than with rapidly changing payoffs.
    Neyedli HF; Welsh TN
    J Neurophysiol; 2014 Mar; 111(5):1016-26. PubMed ID: 24335221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal weighting of costs and probabilities in a risky motor decision-making task requires experience.
    Neyedli HF; Welsh TN
    J Exp Psychol Hum Percept Perform; 2013 Jun; 39(3):638-45. PubMed ID: 23163791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic estimation of task-relevant variance in movement under risk.
    Landy MS; Trommershäuser J; Daw ND
    J Neurosci; 2012 Sep; 32(37):12702-11. PubMed ID: 22972994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal compensation for temporal uncertainty in movement planning.
    Hudson TE; Maloney LT; Landy MS
    PLoS Comput Biol; 2008 Jul; 4(7):e1000130. PubMed ID: 18654619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits to human movement planning with delayed and unpredictable onset of needed information.
    Trommershäuser J; Mattis J; Maloney LT; Landy MS
    Exp Brain Res; 2006 Nov; 175(2):276-84. PubMed ID: 16736179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Consistent Context in Rapid Movement Planning: Suboptimal Endpoint Adjustment to Changing Rewards.
    Neyedli HF; LeBlanc KA
    J Mot Behav; 2017; 49(6):697-707. PubMed ID: 28481692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
    McIntyre J; Stratta F; Lacquaniti F
    J Neurophysiol; 1997 Sep; 78(3):1601-18. PubMed ID: 9310446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward-based motor adaptation can generalize across actions.
    van der Kooij K; Smeets JBJ
    J Exp Psychol Learn Mem Cogn; 2019 Jan; 45(1):71-81. PubMed ID: 29698052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of planar reaching movements. I. Independence of direction and extent variability.
    Gordon J; Ghilardi MF; Ghez C
    Exp Brain Res; 1994; 99(1):97-111. PubMed ID: 7925800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning stochastic reward distributions in a speeded pointing task.
    Seydell A; McCann BC; Trommershäuser J; Knill DC
    J Neurosci; 2008 Apr; 28(17):4356-67. PubMed ID: 18434514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical decision theory and trade-offs in the control of motor response.
    Trommershäuser J; Maloney LT; Landy MS
    Spat Vis; 2003; 16(3-4):255-75. PubMed ID: 12858951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System identification applied to a visuomotor task: near-optimal human performance in a noisy changing task.
    Baddeley RJ; Ingram HA; Miall RC
    J Neurosci; 2003 Apr; 23(7):3066-75. PubMed ID: 12684493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference and shaping in sensorimotor adaptations with rewards.
    Darshan R; Leblois A; Hansel D
    PLoS Comput Biol; 2014 Jan; 10(1):e1003377. PubMed ID: 24415925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choices in a key press decision-making task are more optimal after gaining both aiming and reward experience.
    Manzone JX; Taravati S; Neyedli HF; Welsh TN
    Q J Exp Psychol (Hove); 2020 Dec; 73(12):2197-2216. PubMed ID: 32567514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian decision theory in sensorimotor control.
    Körding KP; Wolpert DM
    Trends Cogn Sci; 2006 Jul; 10(7):319-26. PubMed ID: 16807063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of visual information compromises the ability of older adults to control novel fine motor tasks.
    Baweja HS; Kwon M; Onushko T; Wright DL; Corcos DM; Christou EA
    Exp Brain Res; 2015 Dec; 233(12):3475-88. PubMed ID: 26298044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.