BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16079541)

  • 1. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution.
    Moribe K; Tsutsumi S; Morishita S; Shinozaki H; Tozuka Y; Oguchi T; Yamamoto K
    Chem Pharm Bull (Tokyo); 2005 Aug; 53(8):1025-8. PubMed ID: 16079541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions.
    Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions.
    Shinozaki H; Oguchi T; Suzuki S; Aoki K; Sako T; Morishita S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2006 Aug; 32(7):877-91. PubMed ID: 16908425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micronization of magnolia bark extract with enhanced dissolution behavior by rapid expansion of supercritical solution.
    He S; Zhang Z; Xu F; Zhang S; Lei Z
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):154-9. PubMed ID: 20118572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal doping aided by rapid expansion of supercritical solutions.
    Vemavarapu C; Mollan MJ; Needham TE
    AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion coefficients of phenylbutazone in supercritical CO2 and in ethanol.
    Kong CY; Watanabe K; Funazukuri T
    J Chromatogr A; 2013 Mar; 1279():92-7. PubMed ID: 23369749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic properties of micronized carbamazepine produced by RESS.
    Gosselin PM; Thibert R; Preda M; McMullen JN
    Int J Pharm; 2003 Feb; 252(1-2):225-33. PubMed ID: 12550798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Micronization of magnolia bark extract by RESS as well as dissolution and pharmacokinetics evaluation].
    He S; Lei ZJ; Zhang SY; Zhang ZY
    Yao Xue Xue Bao; 2009 May; 44(5):532-9. PubMed ID: 19618732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of micronized artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method.
    Yu H; Zhao X; Zu Y; Zhang X; Zu B; Zhang X
    Int J Mol Sci; 2012; 13(4):5060-5073. PubMed ID: 22606030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation.
    Oliveira GE; Pinto JF
    AAPS PharmSciTech; 2017 Oct; 18(7):2792-2807. PubMed ID: 28382603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micronization and microencapsulation of felodipine by supercritical carbon dioxide.
    Chiou AH; Cheng HC; Wang DP
    J Microencapsul; 2006 May; 23(3):265-76. PubMed ID: 16801239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation of nanopaticles of SCF-CO2 extraction of Magnolia officinalis].
    He S; Zhang S; Lei Z; Zhang Z
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):390-3. PubMed ID: 19459296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying.
    Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN
    Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microparticles of soy lecithin formed by supercritical processes.
    Badens E; Magnan C; Charbit G
    Biotechnol Bioeng; 2001 Jan; 72(2):194-204. PubMed ID: 11114657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process.
    Zhao X; Zu Y; Jiang R; Wang Y; Li Y; Li Q; Zhao D; Zu B; Zhang B; Sun Z; Zhang X
    Int J Mol Sci; 2011; 12(4):2678-91. PubMed ID: 21731466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.