These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Lin HK; Chen Z; Wang G; Nardella C; Lee SW; Chan CH; Yang WL; Wang J; Egia A; Nakayama KI; Cordon-Cardo C; Teruya-Feldstein J; Pandolfi PP Nature; 2010 Mar; 464(7287):374-9. PubMed ID: 20237562 [TBL] [Abstract][Full Text] [Related]
4. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. You MJ; Castrillon DH; Bastian BC; O'Hagan RC; Bosenberg MW; Parsons R; Chin L; DePinho RA Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1455-60. PubMed ID: 11818530 [TBL] [Abstract][Full Text] [Related]
5. Methylseleninic Acid Superactivates p53-Senescence Cancer Progression Barrier in Prostate Lesions of Pten-Knockout Mouse. Wang L; Guo X; Wang J; Jiang C; Bosland MC; Lü J; Deng Y Cancer Prev Res (Phila); 2016 Jan; 9(1):35-42. PubMed ID: 26511486 [TBL] [Abstract][Full Text] [Related]
6. Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Chen Z; Carracedo A; Lin HK; Koutcher JA; Behrendt N; Egia A; Alimonti A; Carver BS; Gerald W; Teruya-Feldstein J; Loda M; Pandolfi PP Sci Signal; 2009 Aug; 2(84):ra44. PubMed ID: 19690330 [TBL] [Abstract][Full Text] [Related]
7. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Ma L; Teruya-Feldstein J; Behrendt N; Chen Z; Noda T; Hino O; Cordon-Cardo C; Pandolfi PP Genes Dev; 2005 Aug; 19(15):1779-86. PubMed ID: 16027168 [TBL] [Abstract][Full Text] [Related]
8. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Davies MA; Kim SJ; Parikh NU; Dong Z; Bucana CD; Gallick GE Clin Cancer Res; 2002 Jun; 8(6):1904-14. PubMed ID: 12060635 [TBL] [Abstract][Full Text] [Related]
9. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Di Cristofano A; De Acetis M; Koff A; Cordon-Cardo C; Pandolfi PP Nat Genet; 2001 Feb; 27(2):222-4. PubMed ID: 11175795 [TBL] [Abstract][Full Text] [Related]
10. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Alimonti A; Nardella C; Chen Z; Clohessy JG; Carracedo A; Trotman LC; Cheng K; Varmeh S; Kozma SC; Thomas G; Rosivatz E; Woscholski R; Cognetti F; Scher HI; Pandolfi PP J Clin Invest; 2010 Mar; 120(3):681-93. PubMed ID: 20197621 [TBL] [Abstract][Full Text] [Related]
11. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. Zhang XW; Wang XF; Ni SJ; Qin W; Zhao LQ; Hua RX; Lu YW; Li J; Dimri GP; Guo WJ J Pathol; 2015 Mar; 235(4):656-67. PubMed ID: 25382750 [TBL] [Abstract][Full Text] [Related]
12. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Manda KR; Tripathi P; Hsi AC; Ning J; Ruzinova MB; Liapis H; Bailey M; Zhang H; Maher CA; Humphrey PA; Andriole GL; Ding L; You Z; Chen F Oncogene; 2016 Jun; 35(25):3282-92. PubMed ID: 26477312 [TBL] [Abstract][Full Text] [Related]
13. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Kwabi-Addo B; Giri D; Schmidt K; Podsypanina K; Parsons R; Greenberg N; Ittmann M Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11563-8. PubMed ID: 11553783 [TBL] [Abstract][Full Text] [Related]
14. TAp63 induces senescence and suppresses tumorigenesis in vivo. Guo X; Keyes WM; Papazoglu C; Zuber J; Li W; Lowe SW; Vogel H; Mills AA Nat Cell Biol; 2009 Dec; 11(12):1451-7. PubMed ID: 19898465 [TBL] [Abstract][Full Text] [Related]
15. Parisotto M; Grelet E; El Bizri R; Dai Y; Terzic J; Eckert D; Gargowitsch L; Bornert JM; Metzger D J Exp Med; 2018 Jun; 215(6):1749-1763. PubMed ID: 29743291 [TBL] [Abstract][Full Text] [Related]
16. CKIα ablation highlights a critical role for p53 in invasiveness control. Elyada E; Pribluda A; Goldstein RE; Morgenstern Y; Brachya G; Cojocaru G; Snir-Alkalay I; Burstain I; Haffner-Krausz R; Jung S; Wiener Z; Alitalo K; Oren M; Pikarsky E; Ben-Neriah Y Nature; 2011 Feb; 470(7334):409-13. PubMed ID: 21331045 [TBL] [Abstract][Full Text] [Related]
17. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. González-Billalabeitia E; Seitzer N; Song SJ; Song MS; Patnaik A; Liu XS; Epping MT; Papa A; Hobbs RM; Chen M; Lunardi A; Ng C; Webster KA; Signoretti S; Loda M; Asara JM; Nardella C; Clohessy JG; Cantley LC; Pandolfi PP Cancer Discov; 2014 Aug; 4(8):896-904. PubMed ID: 24866151 [TBL] [Abstract][Full Text] [Related]
18. Oncogene-induced senescence as an initial barrier in lymphoma development. Braig M; Lee S; Loddenkemper C; Rudolph C; Peters AH; Schlegelberger B; Stein H; Dörken B; Jenuwein T; Schmitt CA Nature; 2005 Aug; 436(7051):660-5. PubMed ID: 16079837 [TBL] [Abstract][Full Text] [Related]
19. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1) ) and SIRT1 genes. Wu D; Yu S; Jia L; Zou C; Xu Z; Xiao L; Wong KB; Ng CF; Chan FL J Pathol; 2015 May; 236(1):103-15. PubMed ID: 25557355 [TBL] [Abstract][Full Text] [Related]