These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 16080151)

  • 21. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conservation and prediction of solvent accessibility in protein families.
    Rost B; Sander C
    Proteins; 1994 Nov; 20(3):216-26. PubMed ID: 7892171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A neural network method for identification of RNA-interacting residues in protein.
    Jeong E; Chung IF; Miyano S
    Genome Inform; 2004; 15(1):105-16. PubMed ID: 15712114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interaction site prediction based on conditional random fields.
    Li MH; Lin L; Wang XL; Liu T
    Bioinformatics; 2007 Mar; 23(5):597-604. PubMed ID: 17234636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WHISCY: what information does surface conservation yield? Application to data-driven docking.
    de Vries SJ; van Dijk AD; Bonvin AM
    Proteins; 2006 May; 63(3):479-89. PubMed ID: 16450362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and training of a neural network for predicting the solvent accessibility of proteins.
    Ahmad S; Gromiha MM
    J Comput Chem; 2003 Aug; 24(11):1313-20. PubMed ID: 12827672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins.
    Granseth E; Viklund H; Elofsson A
    Bioinformatics; 2006 Jul; 22(14):e191-6. PubMed ID: 16873471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of protein transmembrane helical regions by a neural network.
    Dombi GW; Lawrence J
    Protein Sci; 1994 Apr; 3(4):557-66. PubMed ID: 8003974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites.
    Julenius K; Mølgaard A; Gupta R; Brunak S
    Glycobiology; 2005 Feb; 15(2):153-64. PubMed ID: 15385431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments.
    Constantine KL; Davis ME; Metzler WJ; Mueller L; Claus BL
    J Am Chem Soc; 2006 Jun; 128(22):7252-63. PubMed ID: 16734479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex.
    Montalvao RW; Cavalli A; Salvatella X; Blundell TL; Vendruscolo M
    J Am Chem Soc; 2008 Nov; 130(47):15990-6. PubMed ID: 18980319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence-based protein domain boundary prediction using BP neural network with various property profiles.
    Ye L; Liu T; Wu Z; Zhou R
    Proteins; 2008 Apr; 71(1):300-7. PubMed ID: 17932915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training.
    Dor O; Zhou Y
    Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PIER: protein interface recognition for structural proteomics.
    Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R
    Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of protein secondary structure at 80% accuracy.
    Petersen TN; Lundegaard C; Nielsen M; Bohr H; Bohr J; Brunak S; Gippert GP; Lund O
    Proteins; 2000 Oct; 41(1):17-20. PubMed ID: 10944389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.
    Kaur H; Raghava GP
    In Silico Biol; 2006; 6(1-2):111-25. PubMed ID: 16789918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein flexibility and rigidity predicted from sequence.
    Schlessinger A; Rost B
    Proteins; 2005 Oct; 61(1):115-26. PubMed ID: 16080156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.