These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16080151)

  • 41. A statistical approach to the prediction of pK(a) values in proteins.
    He Y; Xu J; Pan XM
    Proteins; 2007 Oct; 69(1):75-82. PubMed ID: 17588227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intramolecular surface contacts contain information about protein-protein interface regions.
    de Vries SJ; Bonvin AM
    Bioinformatics; 2006 Sep; 22(17):2094-8. PubMed ID: 16766554
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Survey of the geometric association of domain-domain interfaces.
    Kim WK; Ison JC
    Proteins; 2005 Dec; 61(4):1075-88. PubMed ID: 16247798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein-protein binding-sites prediction by protein surface structure conservation.
    Konc J; Janezic D
    J Chem Inf Model; 2007; 47(3):940-4. PubMed ID: 17388583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins.
    Fariselli P; Riccobelli P; Casadio R
    Proteins; 1999 Aug; 36(3):340-6. PubMed ID: 10409827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences.
    Ruan J; Wang K; Yang J; Kurgan LA; Cios K
    Artif Intell Med; 2005; 35(1-2):19-35. PubMed ID: 16081261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information.
    Dominguez C; Boelens R; Bonvin AM
    J Am Chem Soc; 2003 Feb; 125(7):1731-7. PubMed ID: 12580598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A neural network model for the prediction of membrane-spanning amino acid sequences.
    Lohmann R; Schneider G; Behrens D; Wrede P
    Protein Sci; 1994 Sep; 3(9):1597-601. PubMed ID: 7833818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction-based fingerprints of protein-protein interactions.
    Porollo A; Meller J
    Proteins; 2007 Feb; 66(3):630-45. PubMed ID: 17152079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites.
    Julenius K
    Glycobiology; 2007 Aug; 17(8):868-76. PubMed ID: 17494086
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PPRODO: prediction of protein domain boundaries using neural networks.
    Sim J; Kim SY; Lee J
    Proteins; 2005 May; 59(3):627-32. PubMed ID: 15789433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.
    Cui Q; Sulea T; Schrag JD; Munger C; Hung MN; Naïm M; Cygler M; Purisima EO
    J Mol Biol; 2008 Jun; 379(4):787-802. PubMed ID: 18479705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary conservation in multiple faces of protein interaction.
    Choi YS; Yang JS; Choi Y; Ryu SH; Kim S
    Proteins; 2009 Oct; 77(1):14-25. PubMed ID: 19350617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Prediction of binding affinities of protein-ligand complexes using nonlinear models].
    Krepets VV; Belkina NV; Skvortsov VS; Ivanov AS
    Vopr Med Khim; 2000; 46(5):462-73. PubMed ID: 11204627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of multimolecular assemblies by multiple docking.
    Inbar Y; Benyamini H; Nussinov R; Wolfson HJ
    J Mol Biol; 2005 Jun; 349(2):435-47. PubMed ID: 15890207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks.
    Binev Y; Corvo M; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):946-9. PubMed ID: 15154761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network.
    Keil M; Exner TE; Brickmann J
    J Comput Chem; 2004 Apr; 25(6):779-89. PubMed ID: 15011250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the interface of a large protein complex by transferred cross-saturation measurements.
    Nakanishi T; Miyazawa M; Sakakura M; Terasawa H; Takahashi H; Shimada I
    J Mol Biol; 2002 Apr; 318(2):245-9. PubMed ID: 12051834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.